Skip to main content

Table 4 Comparison of discrimination characteristics among six machine learning models

From: Predicting peripartum depression using elastic net regression and machine learning: the role of remnant cholesterol

Characteristics

RF

AdaBoost

SVM

DT

KNN

LD

Accuracy

0.738

0.569

0.677

0.708

0.677

0.646

Precision /Positive Predictive Value

0.754

0.611

0.683

0.720

0.683

0.653

Recall /True Positive Rate

0.738

0.569

0.677

0.708

0.677

0.646

FPR

0.255

0.409

0.323

0.288

0.323

0.354

F1 Score

0.738

0.562

0.678

0.710

0.678

0.648

AUC*

0.850

0.655

0.677

0.712

0.677

0.777

NPV

0.749

0.598

0.674

0.706

0.674

0.643

True Negative Rate

0.745

0.591

0.677

0.712

0.677

0.646

False Negative Rate

0.255

0.409

0.323

0.288

0.323

0.354

  1. Abbreviations: EPDS, Edinburgh Postnatal Depression Scale; RF, random forest; AdaBoost, adaptive boosting; SVM, support vector machine; DT, decision tree; KNN, k-nearest neighbors; LD, linear discriminant; FPR, false positive rate; AUC, area under curve; NPV, negative predictive value
  2. Note: *The corresponding p-values and confidence intervals for the above values are not displayed in the JASP platform