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Abstract
Background  Malnutrition during pregnancy is associated with adverse birth outcomes, but the importance of 
maternal diet during pregnancy for neonatal body composition remains inconclusive. This study investigated the role 
of maternal diet during pregnancy for neonatal body composition in the Ethiopian iABC birth cohort.

Methods  The data stemmed from the first visit at birth comprising 644 mother-child pairs. Shortly after delivery, the 
diet of the last week of pregnancy was assessed by a non-quantitative and non-validated 18-items food frequency 
questionnaire. Multiple imputation was used to handle missing data. Twin births and implausible values were 
excluded from analysis (n = 92). The Dietary Diversity Score (0–9 points) was constructed and exploratory dietary 
patterns were derived via principal component analysis. Neonatal fat mass and fat-free mass were assessed by air-
displacement plethysmography. The associations of maternal Dietary Diversity Score and exploratory dietary patterns 
with gestational age, neonatal anthropometric measures and body composition were investigated using multiple-
adjusted linear regression analysis.

Results  In this cohort (n = 552), mean ± standard deviation (SD) mother’s age was 24.1 ± 4.6 years and the median 
maternal Dietary Diversity Score was 6 (interquartile range = 5–7). An ‘Animal-source food pattern’ and a ‘Vegetarian 
food pattern’ were identified. The mean ± SD birth weight was 3096 ± 363 g and gestational age was 39.0 ± 1.0 weeks. 
Maternal adherence to the Animal-source food pattern, but not Vegetarian food pattern, was related to birth weight 
[79.5 g (95% confidence interval (CI): -14.6, 173.6)]. In the adjusted model, adherence to the Animal-source food 
pattern was associated with higher neonatal fat-free mass [53.1 g (95% CI: -20.3, 126.6)], while neonates of women 
with high compared to low adherence to Dietary Diversity Score and Vegetarian food pattern had higher fat mass 
[19.4 g (95% CI: -7.4, 46.2) and 33.5 g (95% CI: 2.8, 64.1), respectively].
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Background
Despite substantial progress, maternal and child survival 
and health remain major public health concerns in sub-
Saharan Africa (SSA) [1, 2]. Among various intrauterine 
factors, maternal diet is one of the major environmental 
factors influencing embryonic development and foetal 
growth [3], and maternal undernutrition has been shown 
to drive adverse pregnancy outcomes such as low birth 
weight (< 2500 g) [4].

Although a positive relationship between maternal 
adherence to a healthy diet and birth outcomes has been 
observed in high-income countries, data is still inconclu-
sive [5]. Few studies have reported the association of the 
overall maternal diet with birth outcomes in Ethiopia or 
other SSA countries, and the results have been inconsis-
tent [6, 7]. Although no association of a diversified diet 
of the mother with preterm delivery was observed in a 
Ghanaian population [7], Ethiopian mothers with higher 
dietary diversity during pregnancy were at lower risk of 
delivering preterm babies compared to those with lower 
dietary diversity [6]. A positive relation between mater-
nal dietary diversity and birth weight was identified in 
SSA [6–8].

The literature investigating maternal nutrition and 
birth outcomes is dominated by studies of the intake 
of single nutrients or specific food groups in isolation 
[9–12]. Undernutrition is usually not caused by a lack 
of single micronutrients or macronutrients but is rather 
a result of multiple nutrient deficiencies [10]. Diets rep-
resent a complex exposure and are not easily explained 
by isolated nutrients [13]. These complex combinations 
of nutrients interacting with each other cannot be con-
sidered, when investigating singular nutrients or foods. 
An increasing number of epidemiological studies have 
applied dietary pattern analysis, which aims to examine 
the effect of the overall diet including foods, food groups 
and nutrients, their combination and variety as well as 
their frequency and quantity of intake [13, 14]. Despite 
the strength of dietary patterns to account for the com-
plexity of nutritional behaviour, both hypothesis-driven 
and exploratory approaches have rarely been used for the 
investigation of the relation between maternal diet and 
birth outcomes in SSA.

The accurate assessment of neonatal nutritional status 
remains a public health concern. Traditional measures 
such as birth weight and length still serve as common 
indicators of foetal undernutrition [15]. These conven-
tionally assessed birth outcomes consider the body as 

a single compartment and may not sufficiently mea-
sure nutritional status and later disease risk [16]. The 
assessment of neonatal body composition in addition 
to conventional birth outcomes may yield more infor-
mative results on the child’s health status. Most studies 
in low- and middle-income countries rely on neonatal 
anthropometry when examining body composition [17]. 
Recently, air-displacement plethysmography (ADP) has 
been proven to precisely and accurately measure body 
composition of infants in diverse settings, including Ethi-
opia [18], and may be used as a more accurate outcome 
measure when investigating the impact of maternal diet 
on the offspring`s nutritional status.

The present work aimed to investigate the effect of 
maternal dietary diversity and adherence to exploratory 
dietary patterns during pregnancy on neonatal body 
composition and anthropometrics among mother-child 
pairs from semi-urban Ethiopia.

Methods
Study design and population
The detailed primary objectives and design of the pro-
spective birth cohort study infant anthropometry and 
body composition study (iABC) can be found elsewhere 
[18–20]. Women who gave birth at term (gestational 
age ≥ 37 weeks) to an infant ≥ 1500  g without congenital 
malformations at Jimma University Specialized Hospital 
(JUSH) between December 2008 and October 2012, who 
were 15–45 years old and planned to stay in Jimma for at 
least 6 months after delivery were invited to participate in 
the study. Mother-child pairs were examined within 48 h 
after delivery by trained research nurses. The present 
data stemmed from a subset focused on the first visit at 
birth comprising 644 mother-child pairs (Supplementary 
Fig. 1, Additional File 1). The study was conducted based 
on the guidelines developed by the Declaration of Hel-
sinki, and ethical approval was obtained from the Jimma 
University Ethical Review Committee (reference number 
23/12/2008). The study was registered at the Interna-
tional Standard Randomised Controlled Trial Number 
register with the registry number ISRCTN46718296. 
Every mother gave written informed consent on behalf of 
herself and her newborn [18–20].

Dietary assessment
Dietary data were obtained by an Ethiopian-specific, 
non-quantitative and non-validated food frequency 
questionnaire (FFQ), which comprised 18 food items as 
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presented in Supplementary Table 1, Additional File 1. 
The FFQ reflected the past 7 days. At the first visit shortly 
after delivery, the past week represented the last week 
of pregnancy. The participants could choose between 
four different answering options: “not at all”, “one to two 
days”, “three to six days” and “every day”. They answered 
the questionnaire together with nurses, who could speak 
both local languages Amharic and Afan Oromo as well as 
English.

Different statistical approaches are used to characterise 
dietary patterns. Driven by a hypothesis and constructed 
based on previous scientific evidence, dietary indices are 
an a priori approach [14]. As an example, the Dietary 
Diversity Score (DDS) aims to reflect nutrient adequacy 
of the diet, including food groups tailored towards this 
purpose [21]. According to the Women’s Dietary Diver-
sity Score proposed by the United Nation`s Food and 
Agricultural Organisation (FAO), the DDS represents a 
valid, simple and rapid proxy indicator of dietary quality 
[21, 22].

In contrast, the a posteriori approach derives dietary 
patterns of available dietary data at hand using statistical 
modelling. Principal component analysis (PCA) is a com-
mon statistical technique to identify patterns of foods 
that are likely consumed together in the population [23].

Assessment of birth outcomes
The neonates were physically examined at birth provid-
ing measures of gestational age (in weeks), length (in 
cm), weight (in g), fat mass (FM) (in g) and fat-free mass 
(FFM) (in g). Gestational age was determined using the 
New Ballard Score, which provides a valid and accu-
rate method of clinically assessing gestational age in 
newborns, and is based on neuromuscular and physical 
maturity [24, 25]. Birth length was determined in dupli-
cate to the nearest 0.1 cm using a SECA 416 Infantometer 
(SECA, Hamburg, Germany). An infant air-displacement 
plethysmograph, PEA POD® (Life Measurements, Con-
cord, CA, USA) was used to measure birth weight to the 
nearest 0.0001 kg, and to assess neonatal FM and FFM, 
which has previously been described in more detail [19, 
20, 26–28]. The PEA POD® has recently been identified 
to precisely and accurately measure body composition of 
infants, even in Ethiopian settings [18]. Absolute FM and 
FFM were adjusted for body size by dividing by length 
squared to give the fat mass index (FMI in kg/m2) and 
fat-free mass index (FFMI in kg/m2) [16].

Assessment of covariates
General, obstetric and socio-demographic information 
were given by an interview-based questionnaire per-
formed by trained study nurses. Mother’s age (years), 
date of delivery, sex of the child (male/female), number of 
antenatal care visits, parity (number of pregnancies ≥ 20 

weeks of gestation), outcome of pregnancy (singleton/
twin/triplet), mode of delivery (spontaneous vertex 
delivery/breech/instrumental vaginal delivery/caesar-
ean section/other), delivery complications (no/prema-
ture rupture of membranes, chorioamnionitis/prolonged 
first stage of labour/prolonged second stage of labour/
antepartum haemorrhage/postpartum haemorhage/
foetal distress), and supplement (yes/no) and medica-
tion intakes (yes/no) during pregnancy were collected. 
Moreover, information about diseases (yes/no), religious 
background (Muslim/Orthodox Christian/Protestant/
Catholic/other) and parental socioeconomic character-
istics (Supplementary Table 2, Additional File 1) were 
obtained. Maternal weight was measured to the near-
est 0.1  kg by Tanita 418 Bioimpedance analyser (Tanita 
Corp., USA). The mother’s height was determined to the 
nearest 0.1  cm using a SECA 214 stadiometer (SECA, 
Hamburg, Germany). The postpartum BMI of the mother 
was calculated using the mother’s weight (kg) and divid-
ing it by the squared mother’s height (m).

All collected data were double-entered in EpiData Soft-
ware Version 3 (EpiData Association, Odense, Denmark) 
by two trained data clerks.

Statistical analyses
Twin births were excluded from subsequent analyses 
(n = 18). According to the reference data for FM and FFM 
from birth to the age of six months in the semi-urban 
Ethiopian population proposed by Andersen et al. [18], 
absolute FFM and FM were out of the reference range 
in 92 (15%) and 45 (7%) neonates in the 626 mother-
child pairs, respectively. The reference ranges were 
defined as FFM below 2.09 kg or above 3.30 kg and FM 
below 0.03 kg or above 0.49 kg in girls, and FFM below 
2.27 kg or above 3.43 kg and FM below 0.01 kg or above 
0.53 kg in boys, respectively [18]. Values out of the refer-
ence range were assumed to be implausible and recoded 
into missing values. Missing variables as presented in 
Supplementary Table 3, Additional File 1, were filled 
in using multiple imputation techniques (Supplemen-
tary Statement 1, Additional File 1). Some observations 
(n = 74) of imputed and recalculated FFMI and FMI were 
excluded because they remained outside the reference 
range proposed by Andersen et al., which were defined 
as FFMI below 9.6  kg/m² or above 13.2  kg/m² and FMI 
below 0.13 kg/m² or above 2.01 kg/m² in girls, and FFMI 
below 10.03 kg/m² or above 13.57 kg/m² and FMI below 
0.02 kg/m² or above 2.15 kg/m² in boys, respectively [18]. 
The resulting analytical sample included 552 participants 
(Supplementary Fig. 1, Additional File 1).

Dietary data was checked for plausibility by investigat-
ing the intake distribution of the 18 food items in com-
parison to Ethiopian food group consumption identified 
in the Ethiopian National Food Consumption Survey [29] 
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For the DDS construction, the 18 food items were col-
lapsed into 9 food groups referred to as DDS categories 
(Supplementary Table 1, Additional File 1). The aggrega-
tion was based on the guidance on assigning individual 
foods to food groups [21]. A mother who consumed a 
food group at least once in the last week was scored as 
one, otherwise she was coded as zero. The individual’s 
DDS was obtained by the sum of food groups consumed 
during the last week. The maximum achievable DDS 
score was nine.

The 18 original food items were collapsed into 13 vari-
ables according to nutrient profile and culinary use to 
derive exploratory dietary patterns via PCA (Supplemen-
tary Table 1, Additional File 1). Orthogonal (varimax) 
rotation was applied to generate uncorrelated and inter-
pretable principal components, explaining the maximum 
of total variance in the dietary data [30, 31]. Three crite-
ria were used to decide, how many principal components 
to retain: the inspection of the scree plot, an eigenvalue 
greater than one, and the plausibility and interpretabil-
ity of the principal components [30]. The latter criterium 
was fulfilled, when principal components were charac-
terised by at least three food variables with large factor 
loadings (≥ 0.35). The achieved individual factor scores 
facilitated the ranking of participants according to the 
degree to which they adhered to each dietary pattern 
[31].

Both the DDS and the dietary pattern scores were 
divided into three groups approximately equal in size 
using the tertiles as borders, referred to as first, second 
and third tertile, which represented lower, moderate and 
higher adherence to the dietary pattern, respectively. 
General and socio-demographic characteristics were 
examined across the tertiles of the DDS and the pattern 
scores. For normally distributed continuous variables, 
means and standard deviations (SD) were calculated. 
Non-normally distributed continuous variables and the 
DDS were shown as medians and interquartile ranges 
(IQR), whereas categorical variables were depicted as rel-
ative frequencies.

Multiple linear regression analysis was applied to inves-
tigate the associations between the tertile-based groups 
of DDS and exploratory dietary patterns with continu-
ous gestational age, birth weight, birth length and neo-
natal body composition (FFM, FM, FFMI, FMI). The 
main results focused on absolute FFM and FM, while the 
results for FFMI and FMI are presented in the supple-
ment. Mean differences (β) and 95% confidence intervals 
(CI) were calculated for the second and third tertiles of 
the dietary patterns, using the first tertile as the refer-
ence group. Three different models were constructed to 
account for possible confounders and covariates, which 
were chosen based on the literature and considered to 
be associated with either the main outcome and the 

exposure or the outcome only [4, 11, 32, 33]: Model 1 was 
adjusted for age of the mother, gestational age and sex of 
the child. In addition to the covariates included in model 
1, model 2 was also adjusted for parity, mode of delivery, 
delivery complications, supplementation and medica-
tion during pregnancy, number of antenatal care visits 
and diseases. Model 3 was further adjusted for socioeco-
nomic variables including the possession of consumer 
durables, access to electricity and private piped water as 
well as both mother’s and father’s occupation and educa-
tion. The exploratory dietary patterns were additionally 
adjusted for the DDS, because positive correlations were 
previously identified between exploratory dietary pat-
terns and the DDS [34]. Several sensitivity analyses were 
conducted (Supplementary Statement 2, Additional File 
1). A significance level of 0.05 was used for all statistical 
tests and p values were corrected for the false discovery 
rate. However, due to the secondary objective and explor-
atory nature of the present work, the study results will be 
interpreted based on magnitude of effect size and clinical 
relevance rather than statistical significance. The statisti-
cal analyses were performed with SAS Version 9.4 Enter-
prise Guide Version 7.1 (SAS Institute Inc., NC, USA).

Results
Characteristics of the study population
In this cohort (mean mother’s age: 24.1 ± 4.6 years; 51.4% 
female children), the mothers were predominantly pri-
miparous (54.6%), attended antenatal care (93.4%) and 
gave birth spontaneously (92.1%). The majority of moth-
ers had a low socioeconomic status (low education: 
60.4%; housewife: 61.1%). The neonatal mean weight 
was 3.1 ± 0.4 kg and gestational age was 39.0 ± 1.0 weeks. 
(Table 1)

Dietary diversity and exploratory dietary patterns
The median DDS was 6 (IQR: 5–7) and DDS tertiles 
ranged from 1 to 5 (first tertile), 6 (second tertile) and 
7–9 (third tertile). (Table  1). Starchy staple foods were 
universally consumed, followed by legumes, green leafy 
vegetables and other fruits. In contrast, organ meat, milk 
and milk products and eggs were least frequently con-
sumed (Supplementary Fig. 2, Additional File 1).

Two dietary patterns accounting for 28.0% of the total 
variance in food intake were identified (Fig. 1). The first 
identified pattern, called ‘Animal-source food pattern’ 
(AFP), explained 15.5% of the total variance in food 
intake. Meat, dairy, organ meat, eggs and chicken corre-
lated positively with this pattern. The second ‘Vegetarian 
food pattern’ (VFP) explained 12.5% of the total vari-
ance in food intake and was mainly characterised by high 
intakes of vegetables, fruits, legumes and roasted grain 
snacks.
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Parental characteristics according to dietary patterns
The parental characteristics across the tertiles of the 
DDS are presented in Table 1. Compared to the first ter-
tile, women in the third tertile had higher BMI and were 
more likely to receive antenatal care, and to take supple-
ments or medications during pregnancy. They were of 
higher educational and occupational levels with greater 

access to electricity and private piped water. While the 
general parental characteristics were similarly distributed 
across the tertiles of the AFP compared to the distribu-
tion across the tertiles of the DDS, the distribution of 
parental characteristics across the tertiles of the VFP was 
different (Supplementary Table 4, Additional File 1).

Table 1  Descriptive characteristics across tertiles (T) of Dietary Diversity score among 552 Ethiopian mother-child pairs
Dietary Diversity Score

N total T1 T2 T3
n 552 210 152 190
Household characteristics
Dietary Diversity Score [median (IQR)] 6 (5–7) 5 (4–5) 6 (6–6) 7 (7–8)
Animal-source food pattern score 0.00 (1.00) -0.58 (0.60) -0.00 (0.90) 0.65 (1.03)
Vegetarian food pattern score 0.00 (1.00) -0.26 (0.87) 0.05 (1.07) 0.25 (1.01)
Mother’s age (years) 24.1 ± 4.6 24.2 ± 4.8 23.5 ± 4.7 24.5 ± 4.3
Mother’s body mass index (kg/m2) 22.6 ± 3.0 22.3 ± 2.7 22.5 ± 2.9 23.0 ± 3.2
Obstetric history
  Antenatal care (yes; %) 93.4 90.2 93.4 96.8
  Parity (≥ 3; %) 21.9 24.1 22.4 19.2
  Spontaneous vertex delivery (yes; %) 92.1 91.4 93.3 91.9
  Delivery complications (no; %) 94.1 92.6 96.7 93.6
  Diseases (yes; %) 4.2 5.1 4.3 3.1
  Supplementation (yes; %) 13.9 7.1 15.5 20.0
  Medication (yes; %) 15.5 11.1 17.1 19.0
Religion
  Muslim (%) 44.3 39.9 49.7 44.7
  Orthodox Christianity (%) 37.8 43.5 35.1 33.5
Mother’s education
  Higher education (%) 14.0 7.8 13.7 21.0
Father’s education
  Higher education (%) 20.6 12.6 18.8 30.9
Mother’s occupation
  Employee (private and public; %) 20.3 16.8 16.5 27.2
Father’s occupation
  Employee (private and public; %) 59.5 57.7 59.9 61.3
Consumer durables
  Access to electricity (yes; %) 95.1 93.0 95.7 97.1
  Access to private piped water (yes; %) 60.9 52.1 62.9 69.1
  Possession of household items (> 5; %) 13.7 7.0 16.6 18.8
  International wealth index 51.6 ± 18.3 45.8 ± 18.8 53.1 ± 17.9 57.0 ± 15.9
Newborns
Gestational age (weeks) 39.0 ± 1.0 38.9 ± 1.1 39.0 ± 1.0 39.1 ± 1.1
Sex of the child (male; %) 48.6 48.9 49.7 47.4
Anthropometric characteristics
Birth weight (g) 3095.6 ± 362.6 3076.9 ± 371.8 3079.3 ± 350.9 3129.5 ± 359.4
Length (cm) 49.4 ± 1.8 49.3 ± 1.8 49.3 ± 1.8 49.6 ± 1.8
Body composition
Fat-free mass (g) 2845.8 ± 281.2 2836.9 ± 288.9 2847.8 ± 267.8 2854.0 ± 283.2
Fat-free mass index (kg/m2) 11.7 ± 0.7 11.7 ± 0.8 11.7 ± 0.8 11.6 ± 0.7
Fat mass (g) 236.7 ± 119.3 225.4 ± 115.3 225.5 ± 125.7 258.3 ± 115.4
Fat mass index (kg/m2) 1.0 ± 0.5 0.9 ± 0.5 0.9 ± 0.5 1.1 ± 0.5
Data were shown as mean ± standard deviation, unless otherwise stated. Analytical sample (N total = 552) excluded twin births (n = 18) and implausible values for 
Fat-free mass index and Fat mass index (n = 74). IQR = interquartile range
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Dietary diversity, exploratory dietary patterns and birth 
outcomes
Compared to the first tertile of the DDS, babies born to 
mothers of the third tertile were of similar gestational 
age, birth weight and FFM, but had higher absolute FM 
(Table  1). Neonatal characteristics across the tertiles of 
the AFP and VFP scores are presented in Supplementary 
Table 5, Additional File 1.

When applying multiple linear regression, the age- and 
sex-adjusted birth weight (model 1) was higher among 
babies born to mothers with the highest DDS tertile 
compared to those with the lowest DDS tertile (Table 2). 
However, when adjusting for obstetric history and 
socioeconomic variables (model 3), the difference was 
attenuated. No clinically relevant association was found 
between the mother’s DDS and birth length or gesta-
tional age. Similarly, no relevant associations were found 
between the maternal DDS and neonatal FFM (Table 2; 
Fig.  2A) and FFMI (Supplementary Fig.  3A, Additional 
File 1). An increased neonatal FM was seen in the third 
DDS tertile, when adjusting for maternal age, gestational 
age, neonatal sex and obstetric history (model 2, Table 2). 

In model 3, this positive association attenuated but was 
still discernible [mean difference: 19.4  g (95% CI: -7.4, 
46.2)] (Table 2; Fig. 2B). Similarly, babies born to mothers 
with higher DDS (third tertile) showed an increased FMI 
compared to babies of mothers with lower DDS (first ter-
tile) (Supplementary Fig. 3B, Additional File 1).

With regard to the exploratory dietary patterns, com-
pared to those with the lowest AFP adherence (first ter-
tile), mothers with the highest adherence (third tertile) 
gave birth to babies with higher birth weight (Table 3). In 
model 3, this difference was only slightly smaller [mean 
difference: 79.5 (95% CI: -14.6, 173.6)] (Table 3). No rel-
evant associations were found between the mother’s AFP 
and birth length or gestational age. Regarding absolute 
FFM, neonates from mothers in the highest tertile of the 
AFP compared to the lowest tertile showed an increase 
in absolute FFM across all three adjustment models 
(Table  3). After adjusting for age of the mother, gesta-
tional age, sex of the child, obstetric history, DDS and 
socioeconomic variables in model 3, the mean difference 
in neonatal FFM was 53.1 (95% CI: -20.3, 126.6) when 
comparing mothers with higher adherence to the AFP 

Fig. 1  Dietary patterns derived by principal component analysis and rotated factor loadings in 552 pregnant Ethiopian women. Analytical sample (N 
total = 552) excluded twin births (n = 18) and implausible values for Fat-free mass index and Fat mass index (n = 74)
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(third tertile) to those with lower adherence (first tertile) 
(Table  3; Fig.  2A). Similar positive but weaker tenden-
cies were found between the mother’s adherence to the 
AFP and neonatal FFMI (Supplementary Fig.  3A, Addi-
tional File 1). Concerning absolute FM, a higher maternal 
adherence to the AFP (third tertile) compared to a lower 
adherence (first tertile) was related to higher neonatal 
FM, when adjusting for age of the mother, gestational 
age and sex of the child (model 1, Table 3). After further 
adjusting for obstetric history and DDS, this positive 
association remained (model 2, Table  3) and attenuated 
after additionally adjusting for socioeconomic variables 
(model 3, Table 3; Fig. 2B). Very similar results were iden-
tified for FMI (Supplementary Fig. 3B, Additional File 1).

With respect to the VFP, compared to those with the 
lowest adherence (first tertile), mothers with the high-
est adherence (third tertile) gave birth to slightly heavier 
babies (model 3, Table  3). Again, there was no relevant 
association identified between the mother’s VFP and 
either birth length or gestational age. With regard to 
body composition, a higher maternal adherence to the 
VFP (third tertile) compared to a lower adherence (first 
tertile) was associated with higher neonatal FM, which 
was identified across all adjustment models (Table 3). In 
model 3, neonates of mothers with higher adherence to 
the VFP (third tertile) showed higher absolute FM [mean 
difference: 33.5 g (95% CI: 2.8, 64.1)] compared to those 
with lower adherence (first tertile) (Table 3; Fig. 2B). Sim-
ilarly, a positive association was identified between the 
VFP and the neonatal FMI (Supplementary Fig. 3B, Addi-
tional File 1).

Results of the sensitivity analysis are presented in Sup-
plementary Tables 6 and 7 and described in the Supple-
mentary Statement 3, Additional File 1.

Discussion
Summary of main results
The present work investigated associations of maternal 
dietary exposure in the last week of pregnancy with neo-
natal body composition in Ethiopian mother-child pairs. 
Independent of the DDS, maternal adherence to the AFP 
was associated with higher neonatal FFM and FM. In the 
adjusted model, both, higher DDS and maternal adher-
ence to the VFP were related to higher neonatal FM but 
not FFM. While associations of maternal dietary expo-
sure with gestational age and length were of irrelevant 
magnitude, especially maternal adherence to the AFP 
was positively associated with birth weight.

Dietary diversity and neonatal body composition
As previously described, starchy staple foods were most 
commonly consumed in this Ethiopian population 
[35–37]. Fish, organ meat and chicken were the least 
frequently consumed food groups. Although being mea-
sured in a comparable way, the median DDS in this study 
was approximately 2 to 3 score points higher than else-
where in Ethiopia or other SSA countries, which might 
be due to the semi-urban and relatively food-secure study 
area of Jimma Town [36–40].

The relation of maternal diet quality during pregnancy 
with neonatal body composition has been investigated in 
high-income countries [33, 41–44], but only one study 
was conducted in a low-income setting [45]. The most 
frequently studied pregnancy outcomes in SSA are ges-
tational age, birth weight and length [5–8, 46]. None of 
these studies calculated the DDS, but rather used the 
Healthy Eating Index (HEI) [33, 42], which only com-
prises components reflecting adequacy and moderation.

Table 2  Association of Dietary Diversity Score with birth 
outcomes and body composition among 552 Ethiopian mother-
child pairs

Dietary Diversity Score
Mean difference (β) (95% confidence 
interval)
T1 T2 T3

n 210 152 190
Gestational age 
(weeks)
Model 1 Ref. 0.12 (-0.11, 0.34) 0.22 (0.02, 0.43)
Model 2 Ref. 0.12 (-0.10, 0.35) 0.24 (0.02, 0.45)
Model 3 Ref. 0.11 (-0.12, 0.35) 0.19 (-0.04, 0.41)
Birth weight (g)
Model 1 Ref. -2.96 (-79.43, 73.51) 37.14 (-34.91, 

109.18)
Model 2 Ref. -1.77 (-79.43, 75.89) 35.28 (-38.48, 

109.03)
Model 3 Ref. -24.98 (-105.83, 

55.88)
4.14 (-73.55, 81.83)

Length (cm)
Model 1 Ref. -0.03 (-0.43, 0.36) 0.22 (-0.15, 0.59)
Model 2 Ref. -0.04 (-0.45, 0.36) 0.19 (-0.20, 0.57)
Model 3 Ref. -0.17 (-0.58, 0.25) 0.05 (-0.35, 0.45)
Fat-free mass (g)
Model 1 Ref. 7.18 (-51.12, 65.48) 7.42 (-48.27, 63.12)
Model 2 Ref. 4.38 (-54.69, 63.46) 3.99 (-52.78, 60.77)
Model 3 Ref. -11.53 (-73.71, 50.65) -14.13 (-74.69, 

46.43)
Fat mass (g)
Model 1 Ref. -1.09 (-27.24, 25.06) 28.30 (4.17, 52.43)
Model 2 Ref. 2.34 (-24.78, 29.47) 28.81 (3.82, 53.80)
Model 3 Ref. -2.90 (-31.11, 25.31) 19.40 (-7.38, 46.18)
Multiple-adjusted mean differences (β), 95% confidence intervals and p values 
were calculated by linear regression. Model 1: adjusted for age of the mother, sex 
of the child and gestational age (for outcome variables other than gestational 
age); model 2: model 1 + parity, mode of delivery, delivery complications, 
supplementation and medication during pregnancy, number of antenatal care 
visits and diseases; model 3: model 2 + socioeconomic variables (possession of 
consumer durables, access to electricity and private piped water, mother’s and 
father’s occupation and education). Analytical sample (N total = 552) excluded 
twin births (n = 18) and implausible values for Fat-free mass index and Fat mass 
index (n = 74). T = tertile
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In ethnically diverse mother-child pairs from Colorado, 
lower maternal diet quality, as measured by the HEI, was 
positively associated with infant FM [33]. Similar inverse 
associations between maternal HEI and neonatal FM 
were observed in mother-child pairs from Singapore [42]. 
In contrast, in this study, higher maternal DDS was posi-
tively related to neonatal FM. However, existing studies 

are hardly comparable with the findings of the present 
work, which is due to methodological disparities. Studies 
differ in the measurement of exposure e.g. they applied 
different dietary assessment tools at various time points 
during pregnancy reflecting different reference periods, 
and varied in dietary pattern analysis. Moreover, popu-
lations of different socio-demographic backgrounds were 

Fig. 2  Associations of maternal adherence to the Dietary Diversity Score (♦), Animal-source food pattern ( ) or Vegetarian food pattern (▲) with neo-
natal absolute (A) fat-free mass (g) and (B) fat mass (g) among 552 Ethiopian mother-child-pairs. Multiple-adjusted mean differences (β), 95% confidence 
intervals and p values were calculated by linear regression and adjusted for age (mother), sex (child), gestational age, parity, mode of delivery, delivery 
complications, supplementation and medication during pregnancy, number of antenatal care visits, diseases, Dietary Diversity Score (exploratory dietary 
patterns only), socioeconomic variables (possession of consumer durables, access to electricity and private piped water, mother’s and father’s occupation 
and education). Analytical sample (N total = 552) excluded twin births (n = 18) and implausible values for Fat-free mass index and Fat mass index (n = 74). 
T = tertile
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studied. Different techniques were used to determine 
neonatal body composition, including anthropometric 
measures [43, 44], which are not as accurate as ADP to 
measure body composition [33, 41, 42, 45, 47].

The maternal DDS likely reflects the mother`s nutrient 
adequacy [21]. The Ethiopian women with a higher DDS 
consumed red meat, eggs and dairy, dark green leafy veg-
etables and vitamin A-rich fruits and vegetables more 
frequently than those with a lower DDS, whose diet was 
mainly based on starchy foods and legumes. This is in 
line with previous findings [6, 48]. Animal-source foods, 
fruits and vegetables represent sources of bioavailable 
micronutrients, which are essential for the mechanisms 
of growth or as structural components of body tissue 
[6, 10, 49]. For example, animal-source foods efficiently 
supply zinc, which is highly involved in normal growth 
and development [10, 50, 51]. Green leafy vegetables 
particularly provide folate [52], which was previously 
observed to be a potential maternal predictor of greater 
FM in six-year-old offspring of Indian mother-child 
pairs [53]. However, the impact of micronutrients on 
the development and distribution of FFM and FM dur-
ing the foetal period remains unclear, so that the hypoth-
esised mechanisms are speculative and need further 

investigation. Moreover, the present study was focused 
on the overall diet without measurement of single nutri-
ents, which limits any comparison with studies focusing 
on micronutrients.

Exploratory dietary patterns and neonatal body 
composition
With regard to exploratory dietary patterns during preg-
nancy in relation to neonatal body composition, maternal 
adherence to a traditional dietary pattern was previously 
associated with lower neonatal FMI in South-Africans 
[45]. The traditional dietary pattern was characterised 
by a high intake of vegetables, beans and legumes, meats 
and porridge [45]. In a multi-ethnic Asian mother-off-
spring cohort, adherence to a vegetable, fruit and rice 
pattern was associated with lower neonatal adipos-
ity [43], while in a second study from the same popula-
tion, adherence to the vegetable, fruit and rice pattern 
was associated with higher body fat percentage [44]. In 
the present study, maternal adherence to the VFP, which 
was positively correlated with vegetables, fruits, legumes 
and a roasted grain snack, was related to higher neonatal 
FM and significantly associated with larger FMI. Again, 
the results of the studies can hardly be compared, which 

Table 3  Associations of exploratory dietary patterns with birth outcomes and body composition among 552 Ethiopian mother-child 
pairs

Animal-source food pattern Vegetarian food pattern

Mean difference (β) (95% confidence interval) Mean difference (β) (95% confidence interval)

T1 T2 T3 T1 T2 T3
n 183 185 184 183 185 184
Gestational age (weeks)
Model 1 Ref. 0.03 (-0.22, 0.27) 0.01 (-0.21, 0.23) Ref. 0.19 (-0.04,0.41) 0.13 (-0.08, 0.35)
Model 2 Ref. 0.02 (-0.22, 0.26) 0.01 (-0.21, 0.23) Ref. 0.18 (-0.05, 0.41) 0.13 (-0.09, 0.34)
Model 3 Ref. -0.11 (-0.39, 0.16) -0.24 (-0.53, 0.05) Ref. 0.18 (-0.06, 0.42) 0.07 (-0.17, 0.30)
Birth weight (g)
Model 1 Ref. 48.71 (-26.24, 123.67) 90.82 (17.01, 164.63) Ref. -5.68 (-87.29, 75.92) 17.43 (-65.22, 100.09)
Model 2 Ref. 39.59 (-35.99, 115.17) 90.75 (16.71, 164.78) Ref. -6.43 (-89.07, 76.21) 15.27 (-70.10, 100.64)
Model 3 Ref. 31.34 (-52.47, 115.15) 79.51 (-14.59, 173.61) Ref. 4.26 (-81.87, 90.40) 42.28 (-52.75, 137.30)
Length (cm)
Model 1 Ref. 0.36 (-0.03, 0.75) 0.42 (0.05, 0.79) Ref. -0.13 (-0.53, 0.27) -0.21 (-0.62, 0.19)
Model 2 Ref. 0.31 (-0.09, 0.71) 0.40 (0.02, 0.77) Ref. -0.13 (-0.54, 0.27) -0.21 (-0.63, 0.21)
Model 3 Ref. 0.26 (-0.19, 0.71) 0.25 (-0.22, 0.73) Ref. -0.09 (-0.49, 0.32) -0.11 (-0.56, 0.33)
Fat-free mass (g)
Model 1 Ref. 53.04 (-4.86, 110.95) 49.75 (-8.19, 107.69) Ref. -12.54 (-75.01, 49.92) -12.95 (-74.89, 48.98)
Model 2 Ref. 44.74 (-14.22, 103.70) 50.11 (-7.20, 107.43) Ref. -11.37 (-73.81, 51.07) -12.77 (-75.96, 50.43)
Model 3 Ref. 44.19 (-22.80, 111.17) 53.14 (-20.26, 126.55) Ref. -4.26 (-69.72, 61.20) 6.87 (-63.93, 77.66)
Fat mass (g)
Model 1 Ref. -5.09 (-29.20, 19.02) 28.44 (4.29, 52.59) Ref. 11.78 (-13.86, 37.41) 31.53 (3.53, 59.53)
Model 2 Ref. -5.86 (-30.23, 18.51) 27.29 (3.00, 51.59) Ref. 9.47 (-16.23, 35.18) 30.04 (1.31, 58.78)
Model 3 Ref. -15.52 (-43.92, 12.88) 10.32 (-22.34, 42.98) Ref. 10.82 (-16.23, 37.87) 33.48 (2.82, 64.14)
Multiple-adjusted mean differences (β), 95% confidence intervals and p values were calculated by linear regression. Model 1: adjusted for age of the mother, sex of the 
child and gestational age (for outcome variables other than gestational age); model 2: model 1 + parity, mode of delivery, delivery complications, supplementation 
and medication during pregnancy, number of antenatal care visits, diseases and Dietary Diversity Score; model 3: model 2 + socioeconomic variables (possession of 
consumer durables, access to electricity and private piped water, mother’s and father’s occupation and education). Analytical sample (N total = 552) excluded twin 
births (n = 18) and implausible values for Fat-free mass index and Fat mass index (n = 74). T = tertile
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is due to disparities regarding study population, derived 
dietary patterns and measurement of neonatal body 
composition.

Differences in nutrient composition between the 
exploratory dietary patterns could explain the observed 
associations. First, the AFP was mainly characterised by 
high intakes of animal-source foods, which represent a 
rich source of high-quality proteins (red and organ meat, 
dairy, eggs and chicken). Adequate protein intake dur-
ing pregnancy is particularly important for foetal growth 
and development [54]. Animal-based proteins contain 
more essential amino acids than plant-based proteins 
[43, 55], which could possibly drive differences in tissue 
accretion, such as FFM and FM distribution, during the 
foetal period [56, 57]. In line with the fact, that animal-
source foods have a higher content of bioavailable growth 
nutrients, the present study identified an increase in FFM 
among neonates of mothers with higher adherence to the 
AFP. However, observational studies evaluating the asso-
ciations between maternal dietary protein and birth out-
comes have produced inconsistent results [9, 54].

Second, the frequent intakes of carbohydrate-rich 
foods in the VFP may contribute to our findings [41]. 
The quality of maternal carbohydrate intake during preg-
nancy alters circulating maternal glucose and insulin lev-
els, which influences foetal glucose supply and growth 
rate [58, 59]. While in Australian mother-infant pairs the 
quantity of carbohydrate intake during pregnancy was 
not associated with infants’ body composition [59], the 
present results imply that the adherence to the VFP pro-
motes foetal fat accretion. However, the described mech-
anisms are only hypothetical since single nutrients were 
not measured in this work, and underlying biological 
mechanisms driving the relationship between maternal 
dietary nutrients and birth outcomes are not well under-
stood [9, 54].

Robustness of results
Several sensitivity analyses were conducted to test the 
robustness of the present findings. Especially exclud-
ing mother-child pairs recruited during the lean season 
seemed to slightly influence the results. However, the 
changes in effect size were small and precision was low 
due to the smaller sample size after exclusion. Overall, in 
this setting, the results seemed to be robust.

Research prospects and public health implications
This study has important potential implications for future 
research and public health. It has previously been pro-
posed, that foetal body composition serves as a proxy for 
the nutritional status of the foetus and represents a major 
determinant of health status throughout later life [60]. 
For example, FFM accretion during early infancy has 
been shown to be positively associated with length at 1 

year of age and linear growth from 1 to 5 years of age [61], 
which potentially drives beneficial short- and long-term 
consequences like a decreased risk of death throughout 
infancy and impaired cognitive abilities [1, 32]. On the 
one hand, neonates with low FM at birth exhibit a higher 
risk of morbidity in early life and they may also be prone 
to develop chronic metabolic diseases in later life [15, 
62]. On the other hand, an excessive amount of body 
fat is related to adverse effects on pregnancy outcomes 
accompanied by an increased susceptibility to later obe-
sity and diseases [63, 64]. However, the present neonates 
living in a low-income setting were particularly charac-
terised by reduced amounts of FM compared to Western 
populations [65–67]. Since FM serves as energy storage, 
its mobilisation is essentially important for survival dur-
ing times of food insecurity, which is commonly pres-
ent in low-income countries [15, 68]. Thus, an increased 
amount of FM of the observed magnitudes may rather be 
health-beneficial for the neonate. Moreover, the third tri-
mester is the primary period of foetal fat deposition [69], 
and it is perhaps not surprising that measurements of 
maternal dietary intake so close to delivery are associated 
with neonatal adiposity.

Strengths and limitations
To our knowledge, this is the first study that investigated 
the effect of maternal dietary diversity and adherence 
to exploratory dietary patterns in the last week of preg-
nancy on neonatal body composition in SSA. Still, the 
results need to be interpreted very cautiously. Due to the 
secondary objective of the present work, the sample size 
and power calculation was not based on the objective 
of this work, which might have driven the low precision 
of results. The observational nature of the study limits 
causal inference, because the mother’s diet was retro-
spectively assessed at the same time of the outcome. The 
relatively large sample size is outstanding for SSA, but 
the findings may not be generalisable to the whole SSA 
population due to the semi-urban context.

Dietary intake was retrospectively obtained from 
an unvalidated FFQ comprising only 18 food catego-
ries, which might have underestimated the true varia-
tion in dietary intake [70]. Furthermore, the diet of 
the last week of pregnancy may not represent the diet 
throughout the whole pregnancy period, and digestive 
symptoms at the end of pregnancy as well as cultural 
aspects influencing e.g. the occurrence of food taboos 
were not investigated. However, the present work con-
ducted in a semi-urban study area was characterised 
by a population attending antenatal care visits with 
relatively high wealth index and dietary diversity. For 
this reason, it can be speculated, that food taboos only 
played a minor role in the present work [6, 71]. A main 
strength of this study is the construction of dietary 
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patterns to consider the complexity of the diet and 
account for the fact that foods and nutrients are con-
sumed in combination [44, 72]. Not only the hypoth-
esis-driven approach was applied to determine the 
maternal diversity via calculating the DDS as a valid 
proxy indicator of nutritional quality [22], but also the 
data-driven approach was used to exploratory derive 
maternal dietary patterns by PCA [72].

Another major strength of this study lies in the assess-
ment of neonatal body composition via ADP using the 
PEA POD®, which has previously been validated in 
infants [18], and comprises several advantages includ-
ing its non-invasive and fast testing sequence [27]. It has 
been shown to measure the body composition of infants 
in a precise, accurate and rapid manner [18].

Instead of excluding participants with incomplete 
data, the missing variables were filled in using multiple 
imputation techniques [73]. Several measured covariates 
and potential confounders were considered when apply-
ing regression analysis. For example, the relationship 
between dietary diversity and birth outcomes seemed to 
be confounded by socioeconomic conditions. This was 
further supported by the fact that the socioeconomic 
status was substantially better in mother-child pairs with 
higher DDS compared to those with poorer DDS, which 
is consistent with previous studies [48, 74–76]. Socioeco-
nomic variables were adjusted for in regression analysis. 
However, residual and unmeasured confounding could 
not have entirely been excluded. For example, due to 
non-assessment, pre-gestational or pre-natal anthropo-
metric variables like pre-pregnancy BMI and gestational 
weight gain could not have been considered. In contrast 
to residual confounding, overadjustment bias could 
have attenuated the effect sizes. Overall, the picture was 
unchanged and results were similar across all adjustment 
models. Finally, several sensitivity analyses were con-
ducted to test the robustness of the present results.

Conclusions
In conclusion, the findings of the present work sug-
gest that neonatal body composition is influenced by 
a diversified diet during pregnancy in this semi-urban 
Ethiopian study population. While higher maternal 
intake of animal-source foods was associated with 
higher neonatal FFM, higher maternal intake of veg-
etarian foods was associated with higher neonatal FM. 
Future studies should collect dietary data with more 
precise instruments and pre-gestational information 
on maternal anthropometric characteristics. It is cur-
rently unknown if the identified alterations in neona-
tal body composition have positive or negative impacts 
on long-term body composition and health. Future 
approaches should further examine postnatal condi-
tions, which potentially outweigh prenatal influences. 

Therefore, further longitudinal follow-up data on this 
as well as other cohort studies are necessary to inves-
tigate whether neonatal body composition, influenced 
by maternal nutrition, persists into childhood.
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