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Abstract 

Background To investigate the optimal periendometrial zone (PEZ) in ultrasound (US) images and assess the perfor-
mance of ultrasound radiomics in predicting the outcome of frozen embryo transfer (FET).

Methods This prospective study had 422 female participants (training set: n = 358, external validation set: n = 64). 
We delineated the region of interest (ROI) of the endometrium (EN) from ultrasound images of the median sagittal 
surface of the uteri of patients. We determined the ROIs of PEZ on US images by automatically expanding 2.0, 4.0, 6.0, 
and 8.0 mm radii surrounding the EN. We determined the radiomics characteristics based on the ROIs of the endo-
metrium and PEZ, then compared the different sizes of PEZ to determine the optimal PEZ. We constructed models 
of the EN and optimal PEZ using six machine learning algorithms. We developed a combined model using the radi-
omics characteristics of EN and the optimal PEZ. We evaluated the performance of the three models using the area 
under the curve (AUC).

Results The optimal PEZ was 4.0 mm with a maximum AUC of 0.715 (95% confidence interval (CI): 0.581 – 0.833) 
in the external validation set. The combined radiomics model (endometrium and  PEZ4.0 mm) yielded the best predic-
tive performance with AUC = 0.853 (95% CI: 0.811 – 0.890) for the training set and AUC = 0.809 (95% CI: 0.696 – 0.909) 
for the external validation set.

Conclusions PEZ4.0 mm could be the optimal area for predicting clinical pregnancy after FET. An US-based radiomics 
model that combines EN and  PEZ4.0 mm demonstrated strong potential in helping clinicians predict FET outcomes 
more accurately, thereby supporting informed decision-making before treatment.
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Introduction
Since the advent of assisted reproductive technology, 
clinicians and embryologists have attempted to develop 
methods to improve pregnancy rates. However, the 
success rate remains dissatisfactory [1]. Endometrial 
receptivity (ER) and embryo quality are two important 
factors that determine the success of a transplantation 
[2]. As a simple and noninvasive examination method, 
ultrasound is widely used in reproductive medicine. 
Researchers have attempted to determine an ultrasound 
indicator that can predict the outcome of embryo 
transfer. Some studies have reported that indicators 
such as endometrial thickness (EMT), volume, blood 
supply, and peristaltic wave affect ER [3–5]. However, 
evidence from other studies confirm that these indi-
cators are not directly related to the implantation rate 
[6–8]. All ultrasound indicators exhibited limited effec-
tiveness in the assessment of ER. In addition, ER mark-
ers assessed using endometrial biopsy and hysteroscopy 
were described to exhibit “poor ability” [8] and were 
invasive. Therefore, developing a non-invasive alterna-
tive method for evaluating ER is necessary.

Radiomics, a recently developed computational 
method, can be used to extract extensive imaging data 
from medical images that cannot be identified by the 
naked eye. It has been used in various classification 
tasks [9]. The junctional zone (JZ) between the endo-
metrium and the myometrium can undergo periodic 
changes under the influence of estrogen. Recent stud-
ies have shown that the peristalsis of the endometrium 
is closely related to this phenomenon; this can provide 
important information about the pregnancy-related 
microenvironment [10, 11]. We assumed that the inter-
section of the EN and the JZ can contain more com-
prehensive information and obtain better diagnostic 
capabilities. Reportedly, the average thickness of the JZ 
is from 5 to 8  mm, and the normal average maximum 
thickness is 8  mm on magnetic resonance imaging 
(MRI). The pregnancy rate reduces with an increase in 
the thickness [12]. However, MRI is an expensive and 
time-consuming process, and the outline of the JZ in 
the image obtained is neither linear or homogenous 
[13]. The image is not usually very clear, particularly on 
ultrasound. In a previous study where we applied US-
based radiomics to predict pregnancy outcomes after 
frozen embryo transfer (FET), the region of interest 
(ROI) of JZ was obtained by encompassing the hypo-
echoic band surrounding the visible endometrium on 
ultrasound images as fully as possible [14]. However, 
in clinical practice with later models, we found that 
the ROI of JZ often exhibited poor visibility in many 
patients’ ultrasound images, which limited the clinical 

applicability of the prediction model we developed. 
Hence, we attempted to observe the optimal perien-
dometrial zone (PEZ), which is closely associated with 
pregnancy, as an alternative to the JZ.

We attempted to identify the optimal PEZ using 
machine learning (ML) algorithms along with ultra-
sound images of the endometrium and PEZ to predict 
the ER before FET pregnancy.

Method
Study population
This prospective study included 358 women who received 
frozen embryo transfer (FET) at the First Affiliated Hos-
pital of Anhui Medical University (Center 1), from 
August 2023 to October 2024. Additionally, we included 
64 women from Hefei maternal and Child Health Hos-
pital (Center 2) as an external testing set. The inclusion 
criteria were as follows: women under the age of 40 who 
underwent FET of one high-quality blastocyst and had a 
clearly visible endometrium on ultrasound examination. 
The embryos with scores ≥ 3AA、3AB 、3BA、3BB(day 
5) or ≥ 4AA、4AB、4BA、4BB(day 6) were considered 
as high quality embryo blastocyst [15]. The exclusion 
criteria were as follows: women with congenital uterine 
malformations, submucosal fibroids, endometrial polyps, 
uterine adhesions, or uterine adenomyosis and endome-
trial thickness (EMT) < 8  mm or > 14  mm (Fig.  1). We 
recorded the history of each patient, including their age, 
infertility causes and body mass index (BMI). Following 
this, we performed a transvaginal ultrasound (TVS) eval-
uation to determine the exclusion criteria. The day before 
transplantation, we performed TVS to measure the EMT, 
endometrial patter, the type of Colour Doppler, with the 
mid-sagittal plane of the endometrium being preserved 
for digital imaging and communication data. The param-
eters of Colour Doppler are as follows: Color frequency: 
5.0, Gain: 46, Wall filter: 90 Hz, Depth: 8.0. According to 
the Applebaum classification criteria, Type 1 is charac-
terized by the presence of blood flow in the endometrial 
area near the uterine cavity. Type 2 is defined by blood 
flow in half of the endometrial area, and type 3 is indi-
cated by blood flow detected solely in the subendometrial 
area [16]. We conducted a follow-up to assess embryo 
survival in patients at 5  weeks as a clinical pregnancy 
outcome. We compared age, EMT, and other factors with 
pregnancy outcomes.

This study was conducted in accordance with the 
principles of the Declaration of Helsinki and approved 
by the Ethics Review Committee of the First Affiliated 
Hospital of Anhui Medical University (Approval No. 
PJ2023-07–11). All participants signed the relevant 
forms to provide informed consent.
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Transfer protocol
We administered hormone replacement therapy in 
cycles for the treatment. The therapy commenced 
on the third day of the menstrual cycle, with the oral 
intake of 2  mg of estradiol valerate tablets (twice 
daily) for 10  days. We performed TVS monitoring to 
measure the EMT, with a threshold set at greater than 
8  mm. Subsequently, we administered intramuscular 
progesterone injections (60 mg, once daily) and dydro-
gesterone (10 mg, twice daily) orally. Following a 5-day 
progesterone conversion period, we performed the 
FET procedure.

Operating methods
All enrolled women underwent TVS within 24 h before 
FET. The two-dimensional ultrasound scan clearly dis-
played an image of the standard mid-sagittal section 
of the endometrium, and we retrieved and stored the 
image. We recorded the EMT and endometrial pattern. 
We used color Doppler ultrasound to evaluate endo-
metrial blood flow typing. All ultrasound examinations 
were conducted by two doctors with nearly 6 years of 
experience in reproductive ultrasound.

Endometrial radiomic feature extraction and model 
establishment
Ultrasound physician A, with 6  years of experience in 
reproductive ultrasound, who did not have access to 
patient information, manually delineated the region of 
interest (ROI) encompassing the endometrium on the 
sagittal section of the standard endometrial slice. Subse-
quently, using the open-source software tool PyRadiom-
ics, she determined radiomics features, such as original 
images, square images, and wavelet filtered images, from 
the ROI. After half a month, ultrasound physician A and 
another ultrasound physician, with nearly 10  years of 
experience in reproductive ultrasound, used a blinded 
approach to delineate ROIs on randomly selected images 
of 30 patients and evaluated the intra-class and inter-
class correlation coefficients (ICCs).

The steps adopted for processing radiomics fea-
tures were as follows. First, we retained features with 
an ICCs > 0.75 [17]. Second, we performed a univariate 
rank-sum test on the features and discarded those with 
a p-value > 0.05. Following this, we conducted a Spear-
man correlation analysis on the features and Spearman’s 
correlation analysis with r ≥ 0.6 was used to eliminate 
the redundancy [18]. Next, we performed elastic-logistic 

Fig. 1 The flow chart of this study. ART assisted reproductive technology; EMT endometrial thickness; FET frozen embryo transfer; TVS transvaginal 
ultrasound
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analysis of the radiomics features. Finally, we used 
the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) algorithm to optimize model parameters 
through ten-fold cross-validation and select radiom-
ics features with non-zero coefficients from the training 
set. We used multiple ML algorithms, including logistic 
regression (LR), support vector machine (SVM), ran-
dom forest classifier (RF), decision tree classifier (DT), 
k-nearest neighbor classifier (KNN), and Back Propaga-
tion Neural Network (BPNN), to model and analyze the 
merged radiomics features. We evaluated the perfor-
mance of the endometrial model in predicting ER using 
AUC, accuracy, sensitivity, and specificity. The model 
that achieved the best AUC was selected as the radiom-
ics model for the endometrium from the training set and 
external validation set.

Radiomic feature extraction and model establishment 
for periendometrial zone
At the image level, first, we resampled the ultrasound 
images using the B-spline interpolation algorithm to 
align images with different spatial resolutions, ensuring 
that the voxel spacing was standardized to 1 × 1  mm2. 
Next, we applied grayscale normalization to standard-
ize the intensity levels of grayscale images from different 
sources or imaging devices, ensuring consistent bright-
ness and contrast across images. At the feature level, all 
radiomic features in the training set were standardized 
using Z-scores. The parameters (i.e., mean and standard 
deviation) calculated from the training set were strictly 
applied to standardize the validation set, ensuring con-
sistent normalization across different cohort data. We 
automatically expanded the ROI boundaries outward by 
2, 4, 6, and 8 mm using the contour of the endometrium, 
creating corresponding size annular regions around the 
endometrium. We normalized the images and use PyRa-
diomics to extract features such as the original image, 
squared image, and wavelet-filtered image. We retained 
features with an ICCs > 0.75. We performed univariate 
rank-sum tests to analyze the significance of radiomic 
features, using a threshold of p < 0.05. Following this, 
we performed Spearman correlation analysis to iden-
tify redundant features in the 2, 4, 6, and 8 mm regions 
around the endometrium, defining 0.6 as the redundancy 
thresholds, with one of them randomly retained to avoid 
redundancy. Next, we performed elastic-logistic analysis 
on the 2, 4, 6, and 8  mm regions around the endome-
trium separately and evaluated the model performance 
using AUC curves. We used the LASSO algorithm to 
optimize model parameters through ten-fold cross-vali-
dation and select radiomic features with non-zero coeffi-
cients in the training set. We used various ML algorithms 
to model and analyze the radiomic features. We used 

AUC, accuracy, sensitivity, and specificity to evaluate the 
predictive performance of the optimal PEZ model for ER. 
We selected the model with the greatest AUC from the 
training and external validation sets and named it the 
radiomic model for PEZ.

Construction of a combined model
We combined the radiomics features of endometrium 
and PEZ to perform Spearman correlation analysis. Fea-
tures with a correlation threshold > 0.6 were considered 
redundant, with one of them randomly retained to avoid 
redundancy. We then conducted elastic-logistic analysis, 
which yielded 15 radiomics features. We used multiple 
ML algorithms to model the combined radiomics fea-
tures obtained from joint LASSO. We named the model 
with the greatest AUC in the training and external valida-
tion set the combined radiomics model. The flow chart of 
radiomics research is shown in Fig. 2.

Explanation of the optimal model
We used the SHapley Additive exPlanations (SHAP) 
method to explain and visualize the feature importance 
of the best-performing model, which we used to solve the 
“black-box” issue [19]. SHAP summary plots showed the 
global interpretability. The SHAP values, which helped 
measure the impact of individual features on the model’s 
predictions, are shown on the x-axis for each sample, 
whereas the y-axis shows each feature. The positive val-
ues on the graph indicate an increased likelihood of the 
predicted outcome, whereas negative values indicate a 
decrease. Each data point on the plot corresponded to 
an individual sample and indicated the respective SHAP 
value, with the color of the point indicating the magni-
tude of the feature value.

Statistical analysis
We used SPSS 25.0 and Python 2.7 for statistical analyses. 
We used mean ± standard deviation to present quantita-
tive data with normal distribution and median ± inter-
quartile interval to present quantitative data with 
non-normal distribution. We used numbers and per-
centages to indicate the classification variables. We con-
ducted univariate analysis using the Mann–Whitney U 
test, Chi-square test, and Student’s t-test. Statistical sig-
nificance was set at p < 0.05. We performed the DeLong 
test to form the area under the receiver operating char-
acteristic (ROC) of the models and calculate the AUC to 
evaluate the diagnostic performances.

Result
Baseline characteristics
In our study, the training set had 209 clinical pregnan-
cies (58.4%) and 149 non-clinical pregnancies (41.6%). 



Page 5 of 11Xu et al. BMC Pregnancy and Childbirth          (2025) 25:391  

Fig. 2 The radiomics flow chart of the study. PEZ periendometrial zone; ROI Regions-of- interest; EN endometrium; LR logistic regression; SVM 
support vector machine; RF random forest classifier; DT decision tree classifier; KNN k-nearest neighbor classifier; BPNN Back Propagation Neural 
Network
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The external validation set had 36 clinical pregnancies 
(56.3%) and 28 non-clinical pregnancies (43.7%). The 
baseline characteristics of the participants in the study 
are presented in Table 1.

Confirmation of the optimal periendometrial zone (PEZ)
In the comparison among the PEZ at 2, 4, 6, and 8 mm, 
the 4 mm region was found to be optimal (Table 2). Using 
multiple machine learning algorithms, the BPNN model 
outperformed the others, achieving an AUC of 0.744 for 
the  PEZ4.0  mm group in the testing set and 0.715 in the 
external validation set (Table 3).

Comparison of radiomics prediction models
As depicted in Table  4, the combined radiomics model 
(AUC: 0.853, 95% CI: 0.811 – 0.890) outperformed the 
endometrium model (AUC: 0.770, 95% CI: 0.716 – 0.815) 
and the PEZ model (AUC: 0.744, 95% CI: 0.691 – 0.794) 
in the training set. Furthermore, in the external valida-
tion set, the combined radiomics model (AUC: 0.809, 

95% CI: 0.696 – 0.909) outperformed the endometrium 
model (AUC: 0.715, 95% CI: 0.581 – 0.833) and the PEZ 
model (AUC: 0.732, 95% CI: 0.581 – 0.833). The ROC and 
DCA curves of the three models are compared in Fig. 3.

Analysis of feature importance for the optimal model
As illustrated in Fig. 4, we used the SHAP summary plots 
to sort the importance of the features, with the foremost 
feature displayed at the top of the plot.

Discussion
In this study, we analyzed the performance of PEZ of dif-
ferent dimensions using ultrasound images in predict-
ing pregnancy outcomes after FET. We demonstrated 
that the ROI of a 4.0 mm PEZ was optimal for predicting 
pregnancy outcome. We integrated the ultrasound image 
features of the endometrium and PEZ on the mid-sagittal 
plane to demonstrate that this approach offered better 
predictive potential than those based solely on assess-
ments of the endometrial region or PEZ. We developed 

Table 1 Clinical characteristics of patients in the training and external validation set

BMI body mass index, EMT endometrial thickness, IQR interquartile range

Cohort[co] (N) Training set (N = 358) External validation set (N = 64)

Variables levels 0 (N = 149) 1 (N = 209) p 0 (N = 28) 1 (N = 36) p

Age (years), Median (IQR) 32.00(29.00 to 35.00) 31.00 (29.00 to 34.00) 0.089 32.00 (30.00 to 35.00) 30.00 (28.50 to 33.00) 0.052

BMI, Median (IQR) 23.40(22.20 to 25.10) 23.30 (22.30 to 24.70) 0.617 22.10 (20.40 to 25.50) 22.80 (20.40 to 25.30) 0.968

Cause of infertility Tubal 58 (38.9%) 71 (34%) 0.512 10 (35.7%) 15 (41.7%) 0.321

Ovulatory 33 (22.1%) 40 (19.1%) 9 (32.1%) 6 (16.7%)

Male 44 (29.5%) 76 (36.4%) 7 (25%) 8 (22.2%)

Unexplained 14 (9.4%) 22 (10.5%) 2 (7.1%) 7 (19.4%)

EMT (mm), median (IQR) 10.40 (9.60 to 11.70) 10.90 (9.80 to 12.00) 0.038 10.10 (9.05 to 11.35) 10.95 (9.85 to 11.70) 0.066

Endometrial pattern (%) C 110 (73.8%) 145 (69.4%) 0.425 21 (75%) 28 (77.8%) 1.000

B 39 (26.2%) 64 (30.6%) 7 (25%) 8 (22.2%)

the type of Colour Doppler 
(%)

1 36 (24.2%) 45 (21.5%) 0.597 8 (28.6%) 10 (27.8%) 1.000

2 113 (75.8%) 163 (78%) 20 (71.4%) 26 (72.2%)

3 0 (0%) 1 (0.5%) 0 (0%) 0 (0%)

Table 2 Performance of different sizes for PEZ in the training and external validation set

PEZ periendometrial zone, AUC  Area under the curve, CI confidence interval

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training set 2.0 mm 0.628 (0.570–0.684) 0.624 0.611 0.641

4.0 mm 0.647 (0.582–0.703) 0.657 0.853 0.391

6.0 mm 0.594 (0.535–0.652) 0.567 0.431 0.750

8.0 mm 0.580 (0.522–0.635) 0.556 0.445 0.705

External validation set 2.0 mm 0.575 (0.427–0.715) 0.647 0.838 0.419

4.0 mm 0.633 (0.479–0.783) 0.618 0.892 0.290

6.0 mm 0.603 (0.462–0.736) 0.529 0.432 0.645

8.0 mm 0.561 (0.418–0.693) 0.500 0.405 0.613
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and validated a non-invasive, personalized ultrasound 
radiomics model for predicting pregnancy outcomes fol-
lowing FET.

Radiomics uses high-throughput data obtained by 
converting radiographic images into quantitative fea-
tures for classification and analysis. It is used extensively 
in the medical domain [20]. The transitional region 
located between the endometrium and the myometrium 
is known as the JZ. It is visualized on ultrasound scans 
as a hypoechoic region encircling the endometrium. 
The thickness of the JZ demonstrates cyclic variations 
throughout the menstrual cycle. In the absence of preg-
nancy, the JZ causes endometrial peristalsis and contrib-
utes to the regulation of multiple reproductive processes, 
sperm transportation, and embryo implantation [21–23]. 
Its close relationship with pregnancy renders it a funda-
mental component for radiomics analysis. However, the 
JZ cannot be viewed clearly in ultrasonic images, and 
the binding zone appears uneven and non-linear, which 
makes their observation challenging. Based on previous 
studies, the upper limit of the normal thickness of JZ is 
8 mm [12]. In this study, the maximum area surrounding 
the endometrium that we investigated was 8  mm, with 

intervals of 2 mm. Using ultrasound radiomics, we made 
a preliminary attempt to explore the optimal PEZ within 
the 2.0, 4.0, 6.0, and 8.0  mm ranges surrounding the 
endometrium, which is associated with pregnancy out-
comes after FET. This is the first investigation of the opti-
mal PEZ. We found that the prediction performance of 
 PEZ4.0 mm was better than that of other areas, suggesting 
that  PEZ4.0 mm may contain the most extensive microen-
vironment information. Endometrium-based ultrasound 
radiomics has been applied for outcome prediction after 
FET, with an AUC of 0.825 [24]. In our study, we identi-
fied radiomics features of both the endometrium and the 
optimal PEZ. In the training group, our combined model 
achieved an AUC of 0.853, outperforming models using 
either EN or PEZ alone. This integration enhances pre-
diction accuracy for pregnancy outcomes after FET, pro-
viding a more comprehensive assessment of ER. By better 
identifying patients with higher or lower risks of success-
ful implantation, the model may help optimize treatment 
strategies, such as adjusting the timing of embryo trans-
fer or exploring alternative interventions for patients with 
lower predicted success rates. Ultimately, this approach 
has the potential to improve patient outcomes and reduce 

Table 3 Performance of the six ML Models in the training and external validation set

AUC  Area under the curve, ML machine learning, CI confidence interval, LR logistic regression, SVM support vector machine, RF random forest classifier, DT decision 
tree classifier, KNN k-nearest neighbor classifier, BPNN Back Propagation Neural Network

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training set LR 0.628 (0.570–0.684) 0.657 0.853 0.391

SVM 0.641 (0.580–0.694) 0.629 0.616 0.647

RF 0.772 (0.723–0.818) 0.689 0.607 0.801

DT 0.716 (0.669–0.766) 0.673 0.81 0.487

KNN 0.744 (0.692–0.792) 0.689 0.664 0.724

BPNN 0.744 (0.691–0.794) 0.703 0.716 0.686

External validation set LR 0.633 (0.479–0.783) 0.618 0.892 0.29

SVM 0.616 (0.472–0.753) 0.574 0.73 0.387

RF 0.683 (0.527–0.821) 0.676 0.649 0.71

DT 0.685 (0.561–0.802) 0.676 0.973 0.323

KNN 0.548 (0.415–0.677) 0.515 0.568 0.452

BPNN 0.715 (0.581–0.833) 0.647 0.595 0.71

Table 4 Performance of three radiomics model in the training and external validation set

EN endometrium, PEZ periendometrial zone, AUC  Area under the curve, CI confidence interval

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training set EN model 0.770 (0.716–0.815) 0.695 (0.646–0.741) 0.602 (0.529–0.668) 0.821(0.760–0.879)

PEZ model 0.744 (0.691–0.794) 0.703 (0.657–0.749) 0.716 (0.654–0.776) 0.686 (0.612–0.757)

Combined model 0.853 (0.811–0.890) 0.779 (0.738–0.823) 0.725 (0.665–0.785) 0.853 (0.795–0.909)

External validation set EN model 0.732 (0.615–0.846) 0.691 (0.588–0.794) 0.730 (0.579–0.864) 0.645 (0.472–0.812)

PEZ model 0.715 (0.581–0.833) 0.676 (0.559–0.794) 0.649 (0.500–0.806) 0.710 (0.548–0.862)

Combined model 0.809 (0.696–0.909) 0.779 (0.676–0.882) 0.757 (0.606–0.892) 0.806 (0.655–0.933)
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the emotional and financial burdens of failed transfers. 
Besides, of the six ML algorithms applied, BPNN model 
achieved the highest performance. BPNN, as a powerful 
algorithm that models complex nonlinear relationships 
by mimicking biological propagation behaviors, has dis-
tinct advantages in handling complex nonlinearity, auto-
matic feature learning, generalization ability, robustness, 

and scalability for large datasets. These strengths often 
make it outperform traditional ML algorithms in many 
tasks [25]. This might explain why the BPNN model out-
performed the other models in our study. To explain the 
findings of the combined model, we used SHAP sum-
mary plots to showcase the primary predictive factors for 
pregnancy outcomes after FET. This enhanced the trans-
parency and interpretability of the model’s predictions.

Fig. 3 ROC and DCA of three models in the training and external validation set. a ROC of three models in the training set; b ROC of three models 
in the external validation set; (c) DCA of three models in the training set. d DCA of three models in the external validation set. DCA decision curve 
analysis; ROC receiver operating characteristic; EN endometrium; PEZ periendometrial zone
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However, our study had several limitations. First, the 
ROI of the endometrium was manually drawn, which 
may have introduced subjective bias. Therefore, further 
research is needed using automated segmentation meth-
ods. Second, we determined the PEZ by amplifying the 
actual size of the region based on a computer code. How-
ever, owing to the complexity of the code, our data were 
non-continuous. Based on findings from previous stud-
ies, we only preliminarily compared the PEZ within the 
2.0, 4.0, 6.0, and 8.0 mm regions. Other regions should be 
investigated further. Lastly, all participants in our study 
were under 40 and had no uterine abnormalities, which 
may limit the generalizability of our findings. To enhance 
the external validity, we plan to refine our clinical model 
and expand its validation to a larger, more diverse popu-
lation across different healthcare settings. This will help 
assess the model’s applicability and ensure its relevance 
to a broader patient demographic.

For the model to be successfully integrated into clini-
cal practice, several barriers must be addressed. First, 
clinicians will need training to accurately interpret and 
use the model’s predictions, ensuring they understand 
its functionality and can apply its insights to daily deci-
sion-making. Second, standardizing imaging protocols 
across institutions is crucial to ensure consistent and reli-
able model performance, making it applicable in various 

clinical settings. Despite these challenges, the potential 
benefits of this model in improving clinical decision-
making and patient outcomes are substantial. We believe 
that with further validation and addressing these barri-
ers, this model could become an integral part of person-
alized treatment strategies for FET, ultimately improving 
pregnancy success rates and reducing the emotional and 
financial burdens associated with unsuccessful embryo 
transfers.

Conclusions
We aimed to explore the performance of the PEZ in pre-
dicting the outcome of FET and determine the optimal 
size of the PEZ, which was found to be 4.0 mm. Our find-
ings provide novel insights for future research on this 
topic. By establishing an ultrasound radiomics model 
based on information obtained from the EN and PEZ, 
we can accurately predict pregnancy outcomes after FET. 
By successfully applying this integrated model in clini-
cal practice, patient outcomes could improve, while also 
reducing the emotional and financial burdens of FET 
failure.
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