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Abstract
Background Antenatal diagnosis of placenta accreta spectrum (PAS) is of critical importance, considering that 
women have much better outcomes when delivery occurs at a level III or IV maternal care facility before labor 
initiation or bleeding, thus avoiding placental disruption. Herein, we aimed to investigate the performance of 
magnetic resonance imaging (MRI) in antenatal prediction of PAS and postpartum hemorrhage (PPH).

Methods This retrospective study included 433 women with singleton pregnancies (PAS group, n = 208; non-PAS 
group, n = 225; PPH-positive (PPH (+)) group, n = 80; PPH-negative (PPH (-)) group, n = 353), who were randomly 
divided into a training set and a test set in a 7:3 ratio. Radiomic features were extracted from T2WI (T2-weighted 
imaging). Features strongly correlated with PAS and PPH (p < 0.05) were selected using Pearson correlation, followed 
by LASSO regression for dimensionality reduction. Subsequently, radiomics models were constructed for PAS and PPH 
risk prediction, respectively. Regression analyses were conducted using radiomics score (R-score) and clinical factors 
to identify independent clinical risk factors for PAS and PPH, leading to the development of corresponding clinical 
models. Next, clinical-radiomics models were built by combining R-score and clinical risk factors. The predictive 
performance of the models was evaluated using nomograms, calibration curves, and decision curves.

Results The clinical-radiomics models and radiomics models for predicting PAS and PPH risk both outperformed their 
clinical models in the training and testing sets. For PAS, the AUC (Area Under the Receiver Operating Characteristic 
Curve) of the clinical-radiomics model, radiomics model, and clinical model in the training set are 0.918, 0.908, and 
0.755, respectively, and in the testing set, the AUCs are 0.885, 0.866, and 0.771, respectively. For PPH, the AUCs of 
the clinical-radiomics model, radiomics model, and clinical model in the training set are 0.918, 0.884, and 0.723, 
respectively, and in the testing set, the AUCs are 0.905, 0.860, and 0.688, respectively. The DeLong test p-values 
between the clinical-radiomics models and radiomics models for predicting PAS and PPH are both less than 0.05. 
Additionally, in the testing set, the clinical-radiomics models perform best in predicting PAS and PPH risk, with 
accuracies of 82.31% and 84.61%, respectively.
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Introduction
Placenta accreta spectrum (PAS) is a morbid pregnancy 
condition characterized by abnormal placental adher-
ence and invasion into the uterine wall, and may result 
in postpartum hemorrhage (PPH), hysterectomy, and 
even maternal mortality [1, 2]. In recent years, the inci-
dence of PAS has increased significantly, from approxi-
mately 0.02% of pregnancies in the 1970s to 0.17% in 
recent years. This rise is primarily driven by the increas-
ing cesarean delivery rate, along with factors such as 
advanced maternal age and the use of in vitro fertilization 
[3–5].

PPH, defined as > 500 mL estimated blood loss (EBL) 
during vaginal or > 1000 mL EBL during cesarean deliv-
ery, is an important factor in maternal morbidity and 
mortality [6].Therefore, accurately identifying PAS 
patients antenatally and predicting the risk of maternal 
EBL ≥ 1500 mL can be used to classify these women as 
high risk for PPH (+); those with an EBL risk of < 1500 
mL can be classified as low-risk for PPH (-). Transfer-
ring PPH(+) patients from institutions lacking multidis-
ciplinary management capabilities to those institutions 
with multidisciplinary treatment capabilities, along 
with early warning and the formulation of comprehen-
sive treatment plans, is of crucial importance in reduc-
ing severe adverse pregnancy outcomes and ensuring the 
safety of both mother and child [5].

Patients with PAS are often asymptomatic or have 
low-specificity symptoms antenatally, resulting in 
approximately half of cases remaining undiagnosed, with 
detection rates ranging from 30–53% [7–9]. The most 
crucial step in identifying patients at risk for PAS is eval-
uating their clinical and obstetric profile. The absence of 
ultrasound findings or negative ultrasound results does 
not exclude PAS [10, 11]. Although ultrasound is the 
first-line examination for diagnosing PAS [12], its detec-
tion rate is significantly reduced or even impossible in 
cases where the placenta is located in the posterior wall 
or fundus of the uterus, or when imaging is compromised 
by amniotic fluid, maternal obesity, or intestinal gas [13, 
14].

MRI serves as a valuable complementary tool to ultra-
sound due to its excellent soft tissue resolution and abil-
ity to evaluate placental invasion depth, attachment 
location, and relationships with adjacent structures, inde-
pendent of maternal body size, intestinal gas, or placental 
location [15, 16]. Additionally, T2WI excels in visualizing 
placental heterogeneity, particularly intensity inhomoge-
neity caused by placental maturation or pathology [17].

However, its diagnostic accuracy may be limited by the 
subjectivity of radiologist. The integration of MRI with 
radiomics, which extracts high-throughput image fea-
tures invisible to the naked eye, is expected to improve 
diagnostic precision and support individualized treat-
ment planning [18–24].

Based on placental MRI images, this study utilized 
radiomics to establish models for the accurate antenatal 
diagnosis of PAS and prediction of PPH risk. The PAS 
prediction model aims to identify whether a pregnant 
woman has PAS, while the PPH risk prediction model 
focuses on assessing the risk of severe PPH. These mod-
els may facilitate early identification of high-risk groups, 
guide clinical risk stratification, optimize intraoperative 
hemorrhage management, and improve maternal and 
neonatal outcomes.

Materials and methods
Study population
This retrospective analysis included singleton pregnant 
women suspected of PAS who underwent antenatal MRI 
in Beijing Obstetrics and Gynecology Hospital between 
January 2018 and June 2023 and were hospitalized for 
delivery at an elective time. The inclusion criteria were: 
(1) patients with singleton pregnancies who were clini-
cally suspected of PAS (based on placental abnormalities 
identified by ultrasound examination and/or high-risk 
clinical factors) and underwent MRI; (2) patients whose 
gestational age was ≥ 21 weeks; (3) patients with complete 
records of delivery surgery, postoperative diagnosis and/
or pathological diagnosis. The exclusion criteria were as 
follows: (1) MRI images with severe artifacts and poor 
image quality due to fetal movement or other reasons; (2) 
pregnant women whose pregnancy resulted in stillbirth; 
(3) The patient’s key clinical information is missing more 
than 30%. Finally, singleton pregnant patients meeting 
the inclusion and exclusion criteria were randomly allo-
cated to the training set (n = 303) and the test set (n = 130) 
in a 7:3 ratio using a randomized sampling approach.

This retrospective study was approved by the Ethics 
Committee of Beijing Obstetrics and Gynecology Hos-
pital Affiliated with Capital Medical University (approval 
number: 2022-KY-049-01). The study was conducted 
according to the principles of the Declaration of Helsinki. 
The Ethics Committee of Beijing Obstetrics and Gynecol-
ogy Hospital Affiliated with Capital Medical University 
has waived the need for informed consent.

Conclusion This novel clinical-radiomics model has a robust performance in predicting PAS antepartum and 
predicting massive PPH in pregnancies.

Keywords Placenta accreta spectrum, Postpartum hemorrhage, Magnetic resonance imaging, Radiomics
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MRI protocols
Data were acquired using a GE Discovery 750 3.0T MRI 
scanner with a phase-array body coil. A pelvic position-
ing scan was performed in the supine position with the 
feet first, followed by axial, sagittal, and coronal scans 
according to the position of the placenta using non-con-
trast imaging (plain scan). T2WI images were sequen-
tially collected with a single-shot fast spin echo (SSFSE) 
sequence and fast imaging employing a steady-state 
acquisition (FIESTA) sequence. The parameters of MRI 
sequences are presented in Supplementary Table S1.

PAS diagnostic and typing criteria
The following criteria were used for intraoperative and 
postoperative pathological examination [25]: (1) non-
PAS: the placenta can be delivered by itself; (2) PA: the 
placenta has to be removed manually, and the pathol-
ogy shows that the villi are in contact with the surface of 
the myometrium but have not invaded the myometrium; 
(3) PI: significant amounts of hypervascularity, and the 
pathology shows that the villi have invaded the myome-
trium but did not penetrate the plasma membrane layer; 
(4) PP: invasion of placental villi into the muscularis pro-
pria, up to the plasma layer and even into the adjacent 
pelvic tissues.

Image segmentation and feature extraction
The study flowchart is presented in Fig.  1. The origi-
nal SSFSE-T2WI images were imported into ITK-SNAP 
software (v3.6.0, www.itksnap.org). The placenta region 

(including the myometria) was manually sketched layer 
by layer on all sequence images by a resident physician 
(Physician 1) with 1-year experience in MRI diagnosis of 
gynecological and obstetric diseases. Validation was done 
by another associate chief physician (Physician 2) with 
> 10 years of experience, and the region of interest (ROI) 
were saved. Figure 2 (a, c) is two examples of original MRI 
images, and Fig. 2 (b, d) illustrates the labeled ROI area 
on MRI images. Another attending physician with 8 years 
of working experience (physician 3) randomly selected 70 
cases to independently delineate the ROI of the placenta 
(including myometrium), as shown in Fig.  2 (b, d). We 
used the intraclass correlation coefficient (ICC) as the 
consistency evaluation metric to assess the consistency in 
the ROI delineation process among the three doctors. An 
ICC value of > 0.8 indicated good consistency.

The radiomic features were then extracted using the 
pyradiomics library (v 3.1.0,  h t t p  s : /  / p y r  a d  i o m  i c s  . r e a  d t  h 
e d o c s . i o). Pyradiomics is a widely used medical imaging 
analysis tool known for its mature algorithms and stable 
performance. It can extract a wide range of radiomic fea-
tures, including first-order statistical features, shape fea-
tures, texture features, and wavelet-based features, thus 
ensuring the comprehensiveness and accuracy of the fea-
tures used in our study. The feature extraction was per-
formed in a Python 3.7.4 environment.

Feature selection
In this study, feature selection and model construction 
were conducted using R software (v 3.6.1, www.r-project.

Fig. 1 This study includes radiomic feature engineering, model construction, and clinical application. The ROI representing the placenta and adjacent 
uterine tissues was delineated, from which 806 radiomic features were extracted. The least absolute shrinkage and selection operator (LASSO) was then 
used to select radiomic features associated with the target variables (the presence or absence of PAS and the risk level (high or low) of PPH). Based on the 
selected features, a radiomics signature was constructed using a logistic regression classifier, referred to as the radiomics model. Univariate and multivari-
ate analyses were performed to screen for clinically independent risk factors, and a clinical model was developed based on these factors. The clinical and 
radiomic features were combined to construct a clinical radiomics model. The performance of the three models was compared to select the optimal 
prediction model. Finally, the performance and clinical value of the optimized model were validated through calibration and decision curve analysis
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org). First, Pearson correlation coefficients were calcu-
lated for each feature in relation to the target variable 
(the presence or absence of PAS and the risk of PPH [high 
or low]). Features with a P-value > 0.05 were excluded, 
retaining only those with a statistically significant linear 
correlation with the target variable. To further enhance 
the predictive accuracy and prevent overfitting of the 
model, features with an absolute Pearson correlation 
coefficient > 0.2 were then selected, ensuring a stronger 
correlation with the target variable. Finally, the ten-fold 
cross-validated Least Absolute Shrinkage and Selection 
Operator (LASSO) regression method was applied to 
further refine the feature set.

Models construction
Based on the selected radiomic features, this study uti-
lized a logistic regression algorithm with strong interpret-
ability to develop the radiomics model, which generates 
regression coefficients and odds ratios to quantify the 
contribution of individual features to the target variable. 
In addition, univariate and multifactor logistic regression 
analyses were used to screen out clinically independent 

risk factors related to target variables for clinical fac-
tors. Clinical models were constructed, and R-score was 
combined with clinically independent risk factors based 
on the output of radiomics models to construct a clini-
cal-radiomics model. Therefore, we constructed clinical, 
radiomics, and clinical-radiomics models for predicting 
PAS and the risk of PPH in patients suspected of PAS.

Model validation an evaluation
In this study, the predictive performance of different 
models (clinical, radiomics, and clinical-radiomics) for 
PAS and PPH was evaluated using ROC curves and AUC. 
ROC curves were plotted based on the prediction results, 
and a series of comprehensive metrics, including AUC, 
sensitivity, specificity, accuracy, and positive and nega-
tive predictive values, were calculated to assess model 
performance. The optimal threshold for each model was 
determined by selecting the value corresponding to the 
maximum Youden Index derived from the ROC curve of 
the training set. Cases with a predicted probability of PAS 
equal to or exceeding this threshold were classified as 
positive, while those below the threshold were classified 
as negative. Similarly, cases with a predicted probability 
of PPH risk equal to or exceeding the threshold were cat-
egorized as PPH (+), whereas those below the threshold 
were categorized as PPH (-). A clinically usable visual 
nomogram was constructed for the clinical radiomics 
model. A calibration curve was plotted to explore the 
predictive accuracy of the nomogram. Decision curve 
analysis (DCA) was employed to determine the value of 
the nomogram at different clinical decision thresholds.

Statistical analysis
Statistical analyses were performed using R software 
(version 3.6.1, www.r-project.org) and SPSS (version 22.0; 
IBM Corp). Missing data for continuous and categorical 
variables were handled using mean and mode imputa-
tion, respectively. Continuous variables are presented 
as medians and interquartile ranges (IQRs). Qualitative 
variables are presented as frequencies and percentages. 
Continuous variables were compared using the inde-
pendent samples t-test, while categorical variables were 
analyzed using the chi-square test. Univariate and mul-
tivariate logistic regression analyses were used to calcu-
late the p-values, ratios (ORs) and their 95% confidence 
intervals (CIs) for each clinical factor and R-score in 
relation to the target variables (the presence or absence 
of PAS and the risk of PPH [high or low]). Factors with 
p-values < 0.05 in both univariate and multivariate analy-
ses were identified as independent clinical risk factors 
for PAS and the risk levels of PPH. The DeLong test was 
used to analyze whether there was a significant difference 
between the radiomics and clinical-radiomics models.

Fig. 2 Representative cases and delineation of ROI. (a, b) A 37-year-old 
woman at 32 gestation weeks with placenta previa. She had a history 
of G2P1 with one previous cesarean delivery. She had an EBL of 700 mL 
during cesarean delivery. Based on the clinical-radiomics model, the pre-
dicted radiomics score was 0.0508; she was classified as having a low risk 
of PPH. (c, d) A 33-year-old woman at 36 gestation weeks with placenta 
previa. She had a history of G1P1 with one previous cesarean delivery. She 
had an EBL of 6600 mL during cesarean delivery. Based on the clinical-
radiomics model, the predicted R-score was 0.9130; she was classified as 
having a high risk of PPH
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Results
Clinical characteristics of patients
Following the application of inclusion and exclusion cri-
teria, 433 pregnant women (aged 23–46 years) suspected 

of PAS were enrolled in this retrospective study. Based on 
the study design, the cohort was divided into training and 
test sets. Comparative analysis of clinical characteristics 
between the two sets, conducted using t-tests and chi-
square tests, revealed no significant differences (P > 0.05), 
confirming their comparability (Table 1).

Analysis of clinical differences between study groups
In this study, patients were stratified into two groups 
based on distinct research objectives: PAS vs. Non-PAS, 
and PPH (+) vs. PPH (-). Clinical characteristics were 
compared between groups using t-tests and chi-square 
tests. Significant differences (P < 0.05) between PAS 
and Non-PAS groups were observed in gestational age 
at MRI, placenta previa, prior cesarean deliveries, gra-
vidities, parities, and assisted reproduction, suggesting 
potential associations with PAS (Table S2). Similarly, sig-
nificant differences (P < 0.05) between PPH (+) and PPH 
(-) groups were noted in gestational age at MRI, placenta 
previa, prior cesarean deliveries, gravidities, and parities, 
indicating possible links to PPH (Table S3).

Consistency assessment
Excellent inter-observer agreement was demonstrated 
for ROI annotation reproducibility among the annotators 
(Physician 1 and Physician 2, Physician 2 and Physician 
3). The intraclass correlation coefficient (ICC) for ROI 
annotation consistency between Physician 1 and Physi-
cian 2 ranged from 0.81 to 0.91, while the ICC for the 70 
randomly selected ROI annotations validated by Physi-
cian 2 and Physician 3 ranged from 0.83 to 0.97, indicat-
ing high reproducibility.

Features selection and model construction
A total of 806 radiomic features were extracted from 
T2WI. After feature screening through Pearson corre-
lation coefficient analysis and LASSO regression, it was 
found that 43 radiomic features were highly associated 
with PAS (Fig. 3A), and 31 radiomic features were highly 
associated with the risk of PPH (Fig.  3B). Based on the 
selected features, a logistic regression model was estab-
lished to calculate the R-score:

R − score = β0 + β1X1 + β2X2 + · · ·βnXn

where β0represents the truncation value of the best 
parameterλ, Xn represents the screened radiomic fea-
tures, and βnrepresents the coefficient βcorresponding 
to the radiomic features. The R-score for each pregnant 
woman in the training and test sets for predicting PAS 
and PPH risk are shown in Fig. 4.

We conducted univariate and multivariate logistic 
regression analyses on clinical factors (such as maternal 
age, gestational age at MRI, gravidities, parities, prior 
cesarean deliveries, placenta previa, history of miscar-
riage, and assisted reproduction) as well as the scores 

Table 1 Clinical characteristics of patients in training set and test 
set
Characteristics Training 

set
(n = 303)

Test set
(n = 130)

Statis-
tical 
value

P-
value

Maternal Age, years 34(23–45) 34(23–46) -0.64 0.522①

Gestational age at MRI, 
weeks

33(22–40) 33(21–39) -0.453 0.65①

 Placenta Previa 0 1②

 Positive 191 (63.04) 82 (63.08)
 Negative 112 (36.96) 48 (36.92)
Prior cesarean deliveries, 
times

3.96 0.266②

 0 166(54.79) 65(50)
 1 101(33.33) 49(37.69)
 2 30(9.90) 16(12.31)
 3 6(1.98) 0(0)
Gravidities, times 2.367 0.5②

 0 0(0) 0(0)
 1 64(21.12) 27(20.77)
 2 90(29.71) 32(24.62)
 3 63(20.79) 35(26.92)
 > 3 86(28.38) 36(27.69)
Parities, times 5.893 0.207②

 0 135(44.55) 54(41.54)
 1 128(42.24) 59(45.38)
 2 33(10.89) 16(12.31)
 3 7(2.31) 0(0)
 > 3 0(0) 1(0.77)
History of abortion, times 5.503 0.239②

 0 149(49.17) 57(43.85)
 1 79(26.07) 41(31.54)
 2 45(14.85) 18(13.85)
 3 20(6.60) 5(3.85)
 > 3 10(3.30) 9(6.92)
History of other uterine 
operations, times

5.641 0.228②

 0 246(81.19) 97(74.62)
 1 47(15.51) 22(16.92)
 2 6(1.98) 7(5.38)
 3 3(0.99) 3(2.31)
 > 3 1(0.33) 1(0.77)
Assisted reproduction, 
times

1.142 0.888②

 0 265(87.46) 118(90.77)
 1 29(9.57) 9(6.92)
 2 2(0.66) 1(0.77)
 3 3(0.99) 1(0.77)
 > 3 4(1.32) 1(0.77)
Note:① indicates that the data are in median (range) format and the statistic is 
a t-value. ② indicates that the data are in number (percentage) format and the 
statistic is a chi-square value.PAS: placenta accreta spectrum
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output by the radiomics model (R-score). In the uni-
variate logistic regression analysis of the training set, 
R-score, placenta previa, gestational age at MRI, prior 
cesarean deliveries, gravidities, parities, and assisted 
reproduction showed significant associations with PAS 
(p < 0.05; Table 2). After performing multivariate logistic 
regression analysis on these variables, R-score, placenta 
previa, assisted reproduction and gravidities retained 
their robust and independent predictive ability for PAS 
(p < 0.05; Table  2), with placenta previa, assisted repro-
duction and gravidities being identified as independent 
clinical risk factors for PAS. For the radiomics model 
predicting PPH, we also performed univariate and mul-
tivariate logistic regression analyses on its clinical fac-
tors and the output scores (R-score) in the training set. 
The results showed that placenta previa and the R-score 
were significantly associated with the risk of PPH (p val-
ues < 0.05; Table 3), with placenta previa being identified 
as an independent clinical risk factor for PPH. A logistic 
regression classifier was used to establish a clinical model 
for selected clinical independent risk factors. Next, based 
on the R-score combined with the clinically indepen-
dent risk factors associated with the target variables (the 
presence or absence of PAS and the risk of PPH [high or 
low]), a clinical-radiomics model was established using a 
logistic regression classifier.

Model performance assessment
Based on the features selected from clinical and 
radiomics analyses related to the target variables (the 

presence or absence of PAS and the risk of PPH [high 
or low]), a clinical model, a radiomics model, and a clin-
ical-radiomics model were constructed. The diagnos-
tic performance of these three models for diagnosing 
PAS is shown in Table  4; Fig.  5. The clinical-radiomics 
model achieved the highest diagnostic performance in 
both the training and testing sets, with an AUC of 0.918 
(sensitivity = 80.69%, specificity = 87.34%) in the train-
ing cohort and an AUC of 0.885 (sensitivity = 87.30%, 
specificity = 77.61%) in the testing cohort. It outper-
formed the standalone radiomics model (training cohort: 
AUC = 0.908, sensitivity = 81.37%, specificity = 87.34%; 
testing cohort: AUC = 0.866, sensitivity = 87.30%, speci-
ficity = 76.12%) and the clinical model (training cohort: 
AUC = 0.755, sensitivity = 74.48%, specificity = 65.82%; 
testing cohort: AUC = 0.771, sensitivity = 74.60%, speci-
ficity = 70.15%). The predictive performance of the three 
models for PPH risk is shown in Table 4; Fig. 6. Similarly, 
the clinical-radiomics model also demonstrated better 
performance than the standalone radiomics and clini-
cal models in predicting the risk of PPH. The AUC val-
ues for the three models in the test set were 0.905, 0.860, 
and 0.688, respectively; the sensitivities were 64%, 68%, 
and 96%, respectively; and the specificities were 89.52%, 
84.76%, and 44.76%, respectively.

Delong’s test revealed a statistically significant differ-
ence between the combined clinical-radiomics model 
and the radiomics model for predicting PAS (z = 5.8048, 
P < 0.05) and the combined clinical-radiomics model 
and the radiomics model for predicting the risk of PPH 

Fig. 3 (A) Selecting the weights of 43 radiomic features highly correlated with PAS. (B) Selecting the weights of 31 radiomic features closely associated 
with the risk of PPH
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(z = 2.3696, P < 0.05), which showed a significant differ-
ence in performance between the combined clinical-
radiomics model and the radiomics model for predicting 
PAS and for predicting the risk of PPH.

Clinical applications of clinical-radiomics models
Constructing a clinical-radiomics model into a nomo-
gram can transform the output of a complex model into 
an intuitive probability score. Figure  7A presents the 
nomogram of the clinical-radiomics model for predicting 
PAS, where placenta previa, R-score, assisted reproduc-
tion, and gravidity are the input variables, indicating their 
significant predictive value for PAS. Figure 7B shows the 
nomogram of the clinical-radiomics model for predict-
ing the risk of PPH, with placenta previa and R-score as 
the input variables, indicating their significant predictive 

value for assessing the risk of PPH. The decision benefits 
of the models were quantified by Decision Curve Analy-
sis (DCA), which revealed the clinical benefits predicted 
by the models at different thresholds. Figure  8A shows 
the decision curve of the clinical-radiomics model for 
predicting PAS, and Fig. 8B shows the decision curve of 
the clinical-radiomics model for predicting the risk of 
PPH. The results showed that the models demonstrated 
significant predictive benefits at multiple clinical deci-
sion thresholds. In addition, the predictive accuracy of 
the models was further confirmed by calibration curve 
analysis. Figure  9A shows the calibration curve of the 
clinical-radiomics model for predicting PAS, and Fig. 9B 
shows the calibration curve of the clinical-radiomics 
model for predicting the risk of PPH. The calibration 
curve analysis showed that the model predictions were 

Fig. 4 Waterfall plots. (a, b) Histograms of radiomic features for predicting PAS in the training and test sets. Samples with PAS are represented by blue bars, 
and samples without PAS (Non-PAS) are represented by orange bars. The y-axis displays the values of the R-score. (c, d) Histograms of radiomic features for 
predicting PPH risk in the training and test sets. Samples with PPH (+) are represented by blue bars, and samples with PPH(-) are represented by orange 
bars. The y-axis displays the values of the R-score
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in good agreement with the actual clinical results. The 
clinical-radiomics model improved the prediction accu-
racy by combining critical clinical and radiomic data and 
enhancing its utility and operability in the clinical setting 

by applying nomograms, decision curves, and calibration 
curve analysis. These methods provide clinicians with a 
valuable tool to more effectively assess and manage PAS 
and its associated risks.

Table 2 Results of univariate and multivariate logistic regression 
analysis of predicting PAS
Characteristics Univariate logistic 

regression analysis
Multivariate logistic 
regression analysis

OR (95% CI) P value OR (95% CI) P value
R-score 1.178e + 06 

(5.074e + 04–
2.738e + 07)

< 0.001* 3.641e + 05 
(1.142e + 04–
1.161e + 07)

< 0.001*

Maternal Age 1.009 
(0.954–1.067)

0.756 0.994 
(0.910–1.086)

0.902

Gestational age 
at MRI

0.917 
(0.854–0.986)

0.019 * 1.068 
(0.952–1.198)

0.263

Gravidities 1.499 
(1.270–1.770)

< 0.001* 3.069 
(1.354–6.955)

0.007*

Parities 2.741 
(1.916–3.920)

< 0.001* 0.737 
(0.228–2.386)

0.611

Prior cesarean 
deliveries

2.906 
(2.011–4.200)

< 0.001* 0.992 
(0.381–2.583)

0.986

Placenta Previa 3.622 
(2.194–5.979)

< 0.001* 4.699 (2.051–
10.763)

< 0.001*

History of abortion 0.991 
(0.825–1.191)

0.923 0.321 
(0.135–0.763)

0.010*

History of other 
uterine operations

1.068 
(0.788–1.448)

0.67 2.550 
(1.411–4.610)

0.002*

Assisted 
reproduction

0.484 
(0.274–0.852)

0.012* 0.307 
(0.111–0.845)

0.022*

Note: * indicates that the variable has a p-value of less than 0.05 in univariate 
or multivariate analyses and satisfies the characteristic retention condition. The 
odds ratio (OR) indicates the degree of influence of an independent variable on 
the probability of the outcome. An OR > 1 suggests that the factor increases the 
likelihood of the outcome, while an OR < 1 indicates a reduced likelihood. The 
95% confidence interval (CI) reflects the precision of the estimate; if the interval 
does not include 1, the effect is considered statistically significant (p < 0.05)

Abbreviations: OR, odds ratio; R-score, radiomics model output score

Table 3 Results of univariate and multivariate logistic regression 
analysis of predicting PPH risk
Characteristics Univariate logistic 

regression analysis
Multivariate logistic 
regression analysis

OR (95% CI) P value OR (95% CI) P value
R-score 3.863e + 02 

(9.1301–
1.6348e + 03)

< 0.001* 5.376e + 02 
(7.526- 
3.840e + 03)

< 0.001*

Maternal Age 0.958 
(0.890–1.031)

0.251 0.928 
(0.824–1.045)

0.218

Gestational age 
at MRI

0.904 
(0.828–0.986)

0.023 0.903 
(0.785–1.038)

0.15

Gravidities 1.405 
(1.177–1.677)

< 0.001* 0.798 
(0.371–1.716)

0.564

Parities 2.605 
(1.763–3.848)

< 0.001* 1.431 
(0.235–8.708)

0.697

Prior cesarean 
deliveries

2.878 
(1.955–4.237)

< 0.001* 2.743 
(0.613–
12.271)

0.187

Placenta Previa 2.112e + 01 
(5.035–
8.8609e + 01)

< 0.001* 4.019e + 01 
(6.459–
2.501e + 02)

< 0.001*

History of abortion 1.164 
(0.938–1.444)

0.169 1.874 
(0.906–3.879)

0.091

History of other 
uterine operations

0.699 
(0.423–1.155)

0.162 2.065 
(1.088–3.921)

0.027*

Assisted 
reproduction

0.275 
(0.069–1.094)

0.067 * 0.289 
(0.064–1.297)

0.105

Note: * indicates that the variable has a p-value of less than 0.05 in univariate 
or multivariate analyses and satisfies the characteristic retention condition. The 
odds ratio (OR) indicates the degree of influence of an independent variable on 
the probability of the outcome. An OR > 1 suggests that the factor increases the 
likelihood of the outcome, while an OR < 1 indicates a reduced likelihood. The 
95% confidence interval (CI) reflects the precision of the estimate; if the interval 
does not include 1, the effect is considered statistically significant (p < 0.05)

Abbreviations: OR, odds ratio; R-score, radiomics model output score

Table 4 Model performance metrics
Variable Model Set AUC Accuracy Sensitivity Specificity PPV NPV
PAS Clinical Training set 0.755(95% CI, 0.700–0.810) 69.97% 74.48% 65.82% 66.67% 74%

Test set 0.771(95% CI, 0.690–0.846) 72.31% 74.60% 70.15% 70.15% 74.60%
Radiomics Training set 0.908(95% CI, 0.873–0.941) 84.49% 81.37% 87.34% 85.51% 83.64%

Test set 0.866(95% CI, 0.796–0.926) 81.53% 87.30% 76.12% 77.46% 86.44%
Clinical-radiomics Training set 0.918(95% CI, 0.886–0.945) 84.16% 80.69% 87.34% 85.40% 83.13%

Test set 0.885(95% CI, 0.822–0.940) 82.31% 87.30% 77.61% 78.57% 86.67%
PPH Clinical Training set 0.723(95% CI, 0.670–0.769) 60.06% 87.72% 54.03% 29.63% 95.03%

Test set 0.688(95% CI, 0.591–0.767) 54.61% 96.00% 44.76% 29.27% 97.91%
Radiomics Training set 0.884(95% CI, 0.833–0.927) 85.15% 63.63% 89.92% 58.33% 91.77%

Test set 0.860(95% CI, 0.777–0.933) 81.13% 68% 84.76% 51.52% 91.75%
Clinical-radiomics Training set 0.918(95% CI, 0.881–0.948) 87.13% 50.91% 95.16% 70.00% 89.73%

Test set 0.905(95% CI, 0.843–0.955) 84.61% 64% 89.52% 59.26% 91.26%
Note: PAS placenta accreta spectrum, PPH postpartum haemorrhage, PPV positive predictive value, NPV negative predictive value, AUC area under the curve



Page 9 of 14Zou et al. BMC Pregnancy and Childbirth          (2025) 25:398 

Discussion
This study constructed clinical, radiomics, and clinical-
radiomics models to predict PAS and PPH risks, utilizing 
clinical data and radiomic features derived from T2WI. 
For the three models predicting PAS, the AUCs for the 
training set were 0.918, 0.908, and 0.755, and for the test 
set, the AUCs were 0.885, 0.866, and 0.771, respectively. 

The results indicate that the clinical-radiomics model, 
integrating clinical independent risk factors and the 
R-score, outperformed individual radiomics and clini-
cal models in antenatal PAS prediction. For the three 
models predicting PPH risk, the AUCs for the train-
ing set were 0.918, 0.884, and 0.723, and for the test set, 
the AUCs were 0.905, 0.860, and 0.688. Similarly, the 

Fig. 6 ROC curves of the clinical, radiomics, and clinical-radiomics models for predicting the risk of PPH. Among the three models, the clinical-radiomics 
model demonstrated the best performance, with an AUC of 0.918 in the training set and an AUC of 0.905 in the test set

 

Fig. 5 ROC curve of the clinical, radiomics, and clinical-radiomics models for predicting PAS. Among the three models, the clinical-radiomics model 
demonstrated the best performance, with an AUC of 0.918 in the training set and an AUC of 0.885 in the test set
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clinical-radiomics model outperformed the radiomics 
and clinical models in predicting PPH risk. Our findings 
demonstrate that the clinical-radiomics model, integrat-
ing the R-score and clinical factors, offers superior pre-
dictive performance compared to the radiomics model 
and significant advantages over the clinical model. These 
findings underscore the potential of radiomics models for 
predicting PAS and PPH risks, particularly in identifying 
pathological features, complemented by the important 
role of clinical factors in disease prediction.

MRI and Ultrasound are valuable for PAS diagnosis 
during pregnancy, and radiomics analysis based on these 
modalities demonstrates strong potential for PAS pre-
diction [26–28]. Furthermore, studies have shown that 
the occurrence of PAS is closely related to maternal fac-
tors such as parity and placenta previa. Peng et al. [23] 

developed an MRI-radiomics-clinical nomogram that 
integrates clinical factors, including placenta previa and 
prior uterine surgery, to effectively predict PAS. Zhao 
et al. [29]’s research also explored the incidence of sus-
pected PAS and its potential risk factors, finding that 
more than three pregnancies, a history of cesarean sec-
tion, and the presence of placenta previa significantly 
increased the likelihood of antenatal diagnosis of PAS. In 
our study, we also included parity and placenta previa as 
independent risk factors for PAS, consistent with these 
findings. Additionally, our study found a significant asso-
ciation between assisted reproduction and PAS. There is 
relatively less research on predicting PPH. Wu et al. [30] 
proposed an MRI-based clinical-radiomics nomogram 
for PPH prediction. In their study, the model achieved 
AUCs of 0.888 and 0.832 in the training and validation 

Fig. 8 (A) Clinical-radiomics model decision curves predicting PAS. (B) Clinical-radiomics model decision curves predicting the risk of PPH. The x-axis 
displays the threshold probability, and the y-axis measures the net benefit. The blue line represents the training set. The red line represents the test set, 
the gray line represents the assumption that all patients have PAS or PPH, and the black line represents the assumption that no patients have PAS or PPH

 

Fig. 7 (A) Clinical-radiomics model nomogram for predicting PAS. (B) Clinical-radiomics model nomogram for predicting the risk of PPH
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sets, respectively. In comparison, our clinical-radiomics 
model showed superior performance in predicting 
PPH, with AUCs of 0.918 and 0.905 in the training and 
test sets. In both studies, the clinical-radiomics model 
showed significant improvement over the standalone 
radiomics model, indicating the important role of clini-
cal factors in PPH prediction. Notably, our model dem-
onstrated a more significant improvement, which may 
be closely related to the clinical factors we included. 
Specifically, we incorporated “placenta previa” as a fac-
tor in our model. Previous studies have pointed out that 
placenta previa is an important factor in predicting PPH. 
For example, Lee et al. [31]demonstrated that placenta 
previa is a critical predictive factor in their scoring model 
for massive PPH in pregnancies. This factor is considered 
to be a primary driver underlying the enhanced perfor-
mance of our model.

This study selected 43 radiomic features related to PAS, 
covering texture features, shape features, and wavelet 
transform features. Similar to previous studies, we also 
focused on commonly used radiomic features for ana-
lyzing texture details and detecting tissue heterogene-
ity, particularly the Gray Level Co-occurrence Matrix 
(GLCM) and Gray Level Size Zone Matrix (GLSZM). 
GLCM quantifies the spatial relationship between pairs 
of pixels in an image and extracts texture features such 
as contrast and roughness. In PAS, abnormal attachment 
and invasion of the placenta are often associated with tis-
sue heterogeneity, and GLCM can capture these subtle 

structural changes, helping us assess the risk of placen-
tal invasion into the myometrium. The model leverages 
the well-established advantages of these features in tissue 
anomaly detection, providing a solid foundation for PAS 
prediction. Currently, most related studies use a limited 
number of radiomic features, focusing mainly on texture 
and shape features. For example, Zhu et al. [21] proposed 
an MRI-based radiomics model for automatic PAS diag-
nosis combined with clinical features, which included 
3 texture features and 3 shape features. The radiomics 
model achieved AUCs of 0.792 and 0.790 for the train-
ing and testing sets, respectively. Peng et al. [23] con-
structed a clinical-radiomics nomogram based on MRI, 
which included only 3 features: 2 texture features and 1 
shape feature. The radiomics model achieved AUCs of 
0.78, 0.81, and 0.75 for the training, independent vali-
dation, and external validation sets, respectively. Yu et 
al. [32] developed an MRI-based T2WI radiomics-clin-
ical nomogram, incorporating 6 features. The radiomics 
model achieved AUCs of 0.803 and 0.780 for the training 
and validation sets, respectively. Compared to these stud-
ies, our model incorporated 43 radiomics features, cov-
ering various feature types, and achieved AUCs of 0.908 
and 0.866 for the training and testing sets, respectively, 
demonstrating a significant improvement in perfor-
mance. This enhancement is likely closely related to the 
selection of a greater number of features that are more 
relevant to the target variable, thereby boosting the mod-
el’s predictive ability.

Fig. 9 (A) Calibration curves of the clinical-radiomics model predicting PAS. (B) The clinical-radiomics model predicting the risk of PPH. The x-axis rep-
resents the probability of PAS or PPH calculated by the clinical-radiomics model, and the y-axis represents the actual PAS or PPH incidence rate. The 
dotted diagonal line represents the perfect estimation by an ideal model, where the predicted outcomes perfectly correspond to the actual outcomes. 
The blue solid line represents the performance of the clinical-radiomics model in the training set. The red solid line represents the performance of the 
clinical-radiomics model in the test set. The closer the alignment of the solid lines with the dotted diagonal line, the more accurate the model’s estimation
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In the radiomics model for predicting PPH risk, fea-
tures derived from wavelet transform play a key role, 
consistent with previous studies. For example, Wu et al. 
[30]constructed a clinical-radiomics nomogram based 
on MRI for predicting PPH, incorporating 35 features, 
more than half of which were obtained through wave-
let transform. The radiomics model achieved AUCs 
of 0.876 and 0.795 for the training and validation sets, 
respectively. Our model achieved AUCs of 0.884 and 
0.860 for the training and testing sets, respectively. 
Both models demonstrated impressive performance in 
predicting PPH. It is evident that wavelet-derived fea-
tures are strongly associated with the occurrence of 
PPH. For instance, in this study, the three most impor-
tant wavelet-based features in our model, wavelet-
LLL_gldm_SmallDependenceHighGrayLevelEmphasis, 
wavelet-LLL_glszm_GrayLevelNonUniformity, and 
wavelet-HHL_glszm_SizeZoneNonUniformity, reflect 
the non-uniformity of different gray-level regions and 
texture structures in the image. These features capture 
subtle structural changes within the placental area, such 
as vascular morphology and tissue density, which may 
serve as potential indicators for the occurrence of PPH.

According to the current expert consensus guidelines, 
signs of MRI abnormality in PAS include thick low T2 
signal bands within the placenta, placenta/uterus bulge, 
localized exophytic mass, thinning of the myometrium, 
interruption of the bladder wall, and ectopic blood ves-
sels in the placenta bed [33–35]. When the placenta 
adheres to the myometrium, implants, or even penetrates 
the plasma membrane, it can entangle and pull with the 
local myometrium, thus causing morphological and sig-
nal changes in the placenta on MRI. These changes are 
not limited to the adhesion implantation or the lower 
uterine segment. Therefore, in this study, we selected 
sagittal T2WI of all the placenta (including the myome-
trium) to extract image features by outlining the ROI 
layer by layer.

This study could help clinicians reduce serious mater-
nal complications and provide timely treatment in the 
event of serious complications. Most current studies have 
been limited to predicting PAS antenatally but have not 
focused on PPH. However, maternal hemorrhage during 
or after delivery is an important challenge in obstetric 
emergencies, where one of the keys to timely treatment 
is the accurate prediction and estimation of the amount 
of maternal hemorrhage during or after delivery dur-
ing the antenatal period, underestimation of which may 
result in the loss of the opportunity for resuscitation. It 
has been reported that patients with placenta accreta, 
placenta increta, or placenta percreta are at increased 
risk of PPH [36–38]. However, in clinical practice, many 
pregnant women with non-PAS still tend to suffer from 
hemorrhage at the time of delivery, which can seriously 

endanger the life of the mother and child. At the same 
time, some women with PAS also experience only a small 
amount of hemorrhage at the time of delivery. This study 
can help overcome this gap, assisting in the accurate pre-
diction of PPH in non-PAS pregnant women clinically 
suspected of having PAS and in PAS pregnant women 
whose PAS prediction model failed to accurately pre-
dict hemorrhage, as this could help us identify pregnant 
women at high risk of PPH at an early stage, optimize the 
surgical management, proactively prevent perinatal com-
plications, and improve the outcomes of mothers and 
babies.

This study has a few limitations. First, this was a retro-
spective single-center study, which may lead to selection 
bias and affect the generalizability of the results. Second, 
there is a potential bias in collecting non-consecutive 
patients and identifying positive and negative cases sep-
arately. Third, the invasive area of PAS was not evalu-
ated, which may limit the comprehensive assessment 
of disease severity and its clinical implications. Fourth, 
although the models built in the study performed well 
on the training and test sets, their external validation and 
generalization capabilities still need to be confirmed by 
evaluating them on independent samples from different 
regions. Fifth, despite the robust performance of MRI 
in this study, its widespread adoption for screening may 
be limited by factors such as high costs, restricted acces-
sibility, and the need for specialized expertise in image 
interpretation. Sixth, the study was conducted in a high-
risk pregnancy cohort, potentially limiting the generaliz-
ability of the findings to the general pregnant population. 
Future research is planned to be carried out in the fol-
lowing aspects: first, we will actively seek cooperation 
with other medical institutions to establish a multi - cen-
ter imaging data sharing platform, expand the scale and 
diversity of data, and improve the generalization abil-
ity of the model. Second, we will continuously optimize 
the algorithms and parameters of the radiomics model 
to enhance its accuracy and stability. In addition to vali-
dating single-center retrospective data, multi-center 
prospective studies should also be conducted to further 
verify the robustness of the model. Finally, the findings 
of this study could be integrated with information from 
other imaging modalities (other magnetic resonance 
sequences and ultrasound examinations), pathology, and 
other multi-disciplinary information to further improve 
the accuracy and effectiveness of the clinical-radiological 
model in predicting the risks of PAS and PPH antenatally.

Conclusion
Radiomics analysis based on MRI T2WI suggests poten-
tial for the antenatal prediction of PAS and PPH risks. 
The clinical-radiomics model, which integrates high-
dimensional imaging features with independent clinical 
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risk factors, appears to offer improved predictive per-
formance compared to standalone radiomics and clini-
cal models, potentially surpassing existing MRI-based 
approaches in accuracy. However, the generalizability 
of our findings may be constrained by the single-center 
nature of the data and the absence of multicenter external 
validation. Future studies should prioritize multicenter 
collaborations and external validation to evaluate the 
model’s robustness and applicability across diverse clini-
cal populations.
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