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Abstract
Background  Telomere length (TL) is a marker of cellular aging associated with risk for age-related diseases and is 
known to be influenced by various factors, including oxidative stress and inflammation, in the contexts of stress and 
aging. The physiological demands of pregnancy may impact maternal TL, though research in this area is sparse. We 
tested oxidative stress and explored inflammation as predictors of maternal TL in a sample of women with normative 
pregnancies.

Methods  Participants (N = 88, aged 18 to 46 years, 25% non-Hispanic Black, 65% non-Hispanic White) were recruited 
during their 2nd or 3rd trimester. TL was measured using saliva via qPCR as absolute TL. Oxidative stress was derived 
from principal component analysis of selected metabolites measured via urinary metabolomics. Inflammation was 
quantified as total IL-6 in serum. Hypotheses were tested with stepwise generalized linear models.

Results  Longer TL was predicted by higher oxidative stress (b = 0.20 ± 0.08; P =.019), controlling for maternal age, 
gestational age, race/ethnicity, maternal BMI, and income-to-needs ratio. In our exploratory analysis, longer TL was 
also predicted by higher IL-6 (b = 0.76 ± 0.20; P =.0003) controlling for covariates. There was no significant interaction 
between oxidative stress and inflammation predicting TL.

Conclusion  Our findings suggest that in normative pregnancies, both oxidative stress and inflammation are 
independently associated with longer telomere length. Given that these associations are inconsistent with the role of 
oxidative stress and inflammation on telomere biology in non-pregnant samples, future work should aim to replicate 
these findings in both normal and high-risk pregnancies, explore mechanisms underlying these associations using 
longitudinal designs, and examine how these relationships influence maternal and fetal health.
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Background
The physiological demands of pregnancy necessitate 
significant adaptations in various body systems, includ-
ing the cardiovascular, metabolic, and immune systems. 
These adaptations can unmask preexisting subclinical 
conditions or create new physiological strains that may 
have lasting effects on maternal health [1, 2]. Cellular 
aging measures, such as telomere length (TL), may assist 
in identifying women at risk for future disease due to the 
demands of pregnancy [3, 4]. Shorter TL is associated 
with risk for age-related diseases and, in the context of 
stress and aging, is influenced by various factors thought 
to be exacerbated during pregnancy including oxidative 
stress and inflammation [5, 6]. Research on TL and the 
interplay between oxidative stress and inflammation dur-
ing pregnancy may provide an important window into 
understanding how pregnancy-induced physiological 
changes impact long-term maternal health.

The physiological demands of pregnancy may directly 
impact maternal TL, though extant research in this area 
is sparse and mixed [4, 7]. Among studies examining 
maternal TL during pregnancy, several found no within-
person differences in TL from early to late pregnancy [8–
10]; one study found an increase in TL across pregnancy, 
particularly for women under age 35 [11]. Cross-sec-
tionally, the relationship between TL and parity among 
women is mixed, though theory suggests reproduction 
should exert a cost on the cellular systems responsible for 
maintaining TL, leading to shorter telomeres with parity 
[7, 12]. It is not known whether parity-related TL short-
ening would occur during pregnancy, postpartum, or 
across the lifespan as an increased rate of cellular aging.

Oxidative stress, characterized by an imbalance 
between reactive oxygen species (ROS) and antioxidants, 
may increase during pregnancy due to heightened meta-
bolic activity [13]. ROS can damage cellular components, 
including DNA, leading to telomere shortening [14]. 
Elevated systemic oxidative stress levels during preg-
nancy may reflect the balance between ROS generated 
by maternal adaptations to the placenta and the maternal 
antioxidant capacity [15, 16]. Quantification of oxidative 
stress during pregnancy may vary based on gestational 
age, specific metabolites analyzed, and the presence of 
pregnancy-associated conditions such as preeclamp-
sia [16–18]. For instance, Ferguson et al. [17] found 
that while 8-isoprostane, a marker of lipid peroxidation, 
remained relatively constant, 8-hydroxydeoxyguanosine 
(8-OHdG), a marker of oxidative DNA damage, steadily 
increased throughout pregnancy.

The relationship between TL and oxidative stress is 
further complicated by the role of inflammation. In non-
pregnant populations, inflammation can increase ROS 
production and interfere with antioxidant defenses and 
chronically elevated systemic inflammation can lead 

to persistent oxidative stress and accelerated telomere 
shortening [14]. During pregnancy, inflammation is nec-
essary for healthy fetal development and parturition, and 
thus must be balanced to tolerate the developing fetus 
while maintaining maternal protective functions [19]. 
Where maternal and fetal tissues meet, inflammatory 
profiles shift across different stages of pregnancy [20]. At 
the maternal-fetal interface, early pregnancy is character-
ized by a pro-inflammatory state necessary for implan-
tation, whereas mid to late pregnancy is associated with 
an anti-inflammatory state to support fetal growth [21, 
22]. Systemically, levels of maternal inflammation may 
change across pregnancy, with some research findings 
mirroring what is observed at the maternal-fetal inter-
face (i.e., switch from a pro- to anti-inflammatory state 
across pregnancy) [23] and other research finding a gen-
eral increase in systemic inflammation as pregnancy 
progresses [16]. In addition to the influence of timing 
of measurement with respect to gestation, differences in 
findings may depend on the specific markers of inflam-
mation measured (e.g., neutrophil-lymphocyte ratio, 
interleukins, or C-reactive protein), or the specific tissue 
sampled [17, 23, 24]. 

The interplay between oxidative stress, inflamma-
tion, and TL during pregnancy may provide insights into 
long-term health risks for mothers. For example, chronic 
conditions such as hypertension and diabetes, which are 
influenced by oxidative stress and inflammation, may be 
linked to telomere dynamics during pregnancy [25, 26]. 
In this study, we examined oxidative stress and inflamma-
tion as predictors of maternal TL in a cohort of women 
recruited during their 2nd or 3rd trimester of pregnancy. 
We hypothesized that increased oxidative stress during 
pregnancy would be predictive of shorter TL, reflect-
ing the physiological strain of pregnancy. Further, we 
explored the relationship between inflammation and TL 
during pregnancy, and hypothesized that oxidative stress 
and inflammation, being interrelated processes, might 
have interactive effects on maternal TL, with the com-
bination of high oxidative stress and high inflammation 
predicting the shortest TL.

Materials and methods
Study design and sample recruitment
Our analytic sample was drawn from the ongoing 
Brain and Early Experiences (BEE) study, a prospec-
tive longitudinal study on the health and development 
of a racially and ethnically diverse cohort of pregnant 
women and their infants. For complete information on 
the BEE recruitment protocols and data collection pro-
cedures, see Mills-Koonce et al. [27] Briefly, women in 
their 2nd or 3rd trimester of pregnancy were recruited 
using advertisements throughout central North Carolina, 
USA from August 2018 through October 2020. Eligibility 
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criteria included: (1) singleton pregnancy, (2) primarily 
English-speaking at home and (3) living within a 45-min-
ute radius of the study location. Women meeting the 
eligibility criteria were further screened into one of four 
groups to reduce confounding between socioeconomic 
status (SES) and racial identification: low-SES and non-
Black racial identification, high-SES and non-Black racial 
identification, low-SES and Black racial identification, 
and high SES and Black racial identification.

After recruitment, participating women were invited 
for a prenatal laboratory visit to the Biobehavioral Lab-
oratory at the University of North Carolina (UNC) at 
Chapel Hill School of Nursing for collection of biologi-
cal specimens and psychosocial data. The University of 
North Carolina at Chapel Hill Institutional Review Board 
(#17-1914) approved the study, and informed consent 
was obtained from all participants. Of 233 participants 
who completed the prenatal visit, 113 provided saliva col-
lection and consent for TL analysis, and 88 samples had 
sufficient DNA surviving quality control measures for 
TL analysis. These 88 participants comprise our final TL 
analytic sample. Summary statistics for both the full BEE 
prenatal cohort and our analytic sample are provided in 
Table 1.

Telomere length measurement via qPCR
TL was assessed using quantitative polymerase chain 
reaction (qPCR) on DNA extracted from saliva collected 
via passive drool using QIAamp DNA Mini Kit (Qia-
gen). The full Telomere Research Network guidelines for 
reporting are included in Supplemental File S1. Briefly, 
using a Rotor-Gene Q thermocycler connected to an 
uninterruptible power supply, two runs per qPCR assay 
were conducted – one quantifying telomere content (T) 
and one quantifying genome copy number (S) using the 
single copy gene IFNBI [28–30]. Standards for telomeric 
DNA contained known concentrations of 84 bp double-
stranded oligomers with 16 copies of telomeric repeat 
(TTAGGG). Standards for genome copy number con-
tained known concentrations of 83  bp double-stranded 

oligomers with a sequence corresponding to the IFNB1 
genomic region flanked by IFNB1 primers. Comparison 
of telomeric content (T) to genome copy number (S) 
allowed for quantification of sample TL in an absolute 
unit of kilobase pairs.

Inflammatory measurement via ELISA
For our exploratory analysis of inflammation, a sub-
sample (N = 122) of women from the full BEE study 
completed the prenatal laboratory visit prior to the 
COVID-19 pandemic and had blood samples available 
for inflammatory measurement. Of these 122 women, 44 
had both TL data and inflammatory data. Blood was col-
lected via venipuncture in 2 mL EDTA tubes by a trained 
phlebotomist. Samples were immediately stored on ice 
before being centrifuged for 10 min at 2000 x g at 4 °C. 1 
mL of serum was aliquoted into vials and stored at -80 °C. 
IL-6 concentration was determined using an electroche-
miluminescence platform and quantified with the MESO 
QuickPlex SQ120 (Meso Scale Discovery, Gaithersburg, 
MD). Based on initial correlations with TL and the estab-
lished relationship between IL-6 and adverse pregnancy 
outcomes [31], IL-6 was selected for downstream analysis 
from a 6-plex inflammatory panel assay (see Supplemen-
tal File S2). The intra-assay CV for IL-6 was 4.93% and 
the lower limit of detection was 0.06 pg/mL.

Oxidative stress measurement via NMR
Non-fasting prenatal urine samples were collected from 
all participants during their prenatal visit and transferred 
to The Pennsylvania State University for metabolomic 
profiling via nuclear magnetic resonance (NMR) spec-
troscopy. For each sample, 500 µl urine was mixed with 
14 µl KF (5 M) and vortexed for 10 s followed by centrifu-
gation at 12000 g for 20 min at 4 ºC. 450 µl of superna-
tant was transferred into 5 mm 4” long SampleJet NMR 
tubes containing 8.3  µl EDTA-d12 (0.12  M). 45  µl PBS 
(1.5 M), pH 7.4, prepared in 100% D2O with 0.005% TSP 
(trimethyl silylpropanoic acid, w/v, NMR internal stan-
dard) was added into NMR tubes and mixed. NMR spec-
tra were recorded using a Bruker’s 600 MHz Instrument 
equipped with an AVANCE NEO console, a helium-
cooled z-gradient triple resonance (1  H,13  C,15  N) 
inverse cryoprobe (all channel preamps are cooled) and a 
SampleJet autosampler. The one-dimensional [1]H spec-
tra were acquired using Bruker’s standard water suppres-
sion, 1D NOESY with presaturation and spoil gradients 
(noesygppr1d) pulse sequence with 96 scans and 64k data 
points over a spectral width of 9615 Hz. Acquisition time 
was 3.4 s and relaxation delay was 12 s. The experiments 
were performed in an automated fashion using Bruker’s 
ICONNMR software at 298 K.

Data were processed employing TopSpin 4.1.4 (Bruker 
BioSpin Inc) software. multiple 1  H-NMR spectra were 

Table 1  Descriptive statistics for full BEE study cohort and TL 
analytic sample
Variable, mean (SD) Full Cohort

(N = 233)
TL Ana-
lytic Sample 
(N = 88)

p-val

Age (years) 30.7 (5.43) 31.4 (5.3) 0.10
Gestational Age (days) 203 (27) 203 (27) 0.81
Pre-pregnancy BMI 27.7 (7.3) 27.5 (6.6) 0.77
Income to Needs Ratio 3.66 (3.5) 4.01 (2.8) 0.030
Primary Race/Ethnicity
Black 82 (35%) 22 (25%) 0.09
White 128 (55%) 57 (65%) 0.14
Other 23 (9.9%) 9 (10%) 0.99
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overlaid using Chenomx NMR Suite Professional soft-
ware package version 10.0 (Chenomx Inc., Edmonton, 
AB) and consistent peaks across samples were identi-
fied. Each identified peak was assigned to its respective 
metabolite (see Supplemental File S3 for details). All con-
centrations were normalized to creatinine abundance 
(µM of metabolite / mM of creatinine).

To construct the final oxidative stress variable, we 
selected a set of metabolites associated with oxida-
tive stress. These metabolites were selected for their 
roles in oxidative pathways, redox reactions, and oxida-
tive damage, as well as their involvement in mitochon-
drial dysfunction, protein oxidation, and DNA damage. 
The metabolites included were 1-Methylnicotinamide, 
2-Aminoadipate, 3-Indoxylsulfate, Dimethylamine, 
Formate, Methylguanidine, Trimethylamine N-oxide 
(TMAO), N6-Acetyllysine, and Taurine [32–51]. To miti-
gate the influence of outliers and ensure more robust 
estimates, we applied winsorization, capping extreme 
values at the 5th and 95th percentiles (average of 8 values 
winsorized per metabolite, range: 7–13) [52, 53]. Metab-
olites were standardized to have a mean of zero and a 
standard deviation of one prior to use in a principal com-
ponent analysis (PCA). To reduce the dimensionality of 
the data while retaining most of the variation, we derived 
the first principal component (PC1 = 93.5% of total vari-
ance captured) for use as our final “oxidative stress” vari-
able (see Supplemental File 3 Table S2 for correlations 
between each metabolite and final composite oxidative 
stress variable).

Covariates
The following set of covariates known to interact with 
TL, oxidative stress, and inflammation were included 
in our analyses: maternal age in years, gestational age at 
time of sample collection, pre-pregnancy BMI, race/eth-
nicity, and income-to-needs ratio. Gestational age was 
measured in days; pre-pregnancy BMI was defined as the 
mother’s self-reported pre-pregnancy weight over height 
(as kilograms/meters2); race/ethnicity was self-reported 
and coded as either ‘Black’, ‘White’, or ‘Other’; income-
to-needs was defined as the ratio of family income to the 
federal poverty threshold. Pregnancy smoking status was 
initially included in the analysis, but the rate of smoking 
during pregnancy was so low (2 individuals total) that it 
was dropped from the analysis with no change in the esti-
mates for other predictors or covariates.

Statistical analysis
Statistical analyses were performed with R version 4.1.2. 
Demographic differences between the full BEE prenatal 
cohort and the TL analytic sample were assessed via two-
tailed Mann-Whitney U tests for continuous variables 
and two-way Chi-Square tests for dichotomous variables. 

Bivariate correlations among TL, oxidative stress, inflam-
mation, and covariates were assessed using the ‘cor’ func-
tion in base R to calculate Pearson or Phi coefficients as 
appropriate. TL was normally distributed with one out-
lier at the right end of the distribution (see Supplemental 
File S4 for Q-Q plot and histogram of original TL values); 
this value was winsorized to the 95th percentile; analyses 
with winsorized and non-winsorized versions of TL were 
consistent and results with the winsorized outcome are 
reported here. Generalized linear models were fit with 
TL as the outcome using the ‘glm’ function.

To maximize statistical power and data utilization, 
and to ensure robust estimates, we constructed a fully 
imputed dataset using random forest imputation with the 
missForest package, employing default parameters [54]. 
Application of missForest for imputation of missing bio-
logical data gives less biased results than other imputa-
tion methods based on a range of accuracy metrics [55, 
56]. We imputed 5 values (5.7%) for the oxidative stress 
variable, and 44 values (50%) for the inflammation vari-
able. The out-of-bag (OOB) error estimate indicated a 
normalized root mean squared error (NRMSE) of 0.239, 
suggesting a reasonably accurate imputation. Data were 
analyzed both with and without imputation. Imputed and 
complete-case datasets produced similar results, and we 
report imputed results below (see Supplemental File S5 
for comparison of results with and without imputation). 
Statistical significance was set at two-tailed P <.05. To 
address the issue of multiple comparisons and control 
the expected proportion of false positives among rejected 
hypotheses, we applied the Holm correction using the 
‘p.adjust’ function in the ‘stats’ library with method = 
“holm” and report our adjusted p-values below for each 
of our final covariate adjusted models.

Results
Sample descriptives
Participants in our analytic sample were, on average, 
30.7 ± 5.43 years old at the time of sample collection, with 
25% self-identified Black, 65% self-identified White, and 
10% self-identified as a race/ethnicity other than Black or 
White (4 women self-identifying as “Other” for race and 
“Hispanic or Latino” for ethnicity; 5 women self-identi-
fying as “Other” for race and “Not Hispanic or Latino” 
for ethnicity). Due to sample size restrictions, we were 
unable to analyze these groups separately. Compared to 
the full BEE prenatal cohort, our sample had a slightly 
higher income-to-needs ratio (BEE prenatal cohort 
income-to-needs = 3.66 ± 3.5; TL analytic sample income-
to-needs = 4.01 ± 2.8; P =.030). There were no differences 
by race/ethnicity, maternal age, gestational age at sample 
collection, or pre-pregnancy BMI (Table 1).

Relationships among TL and measures of external 
validity were directionally appropriate [57], though not 
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statistically significant in our sample: shorter TL was 
associated with older maternal age, White and Other 
race/ethnicity, and higher pre-pregnancy BMI, and lon-
ger TL was associated with Black race/ethnicity (Fig. 1). 
TL was positively correlated with oxidative stress (r =.21, 
P =.053), and IL-6 (r =.34, P <.001). As previously reported 
for the BEE cohort [58], Black race/ethnicity was corre-
lated with higher BMI (r =.27, P <.001) and White race/
ethnicity was correlated with lower BMI (r=-.27, P <.001). 
Black race/ethnicity was also correlated with lower oxi-
dative stress (r=-.16, P =.021) and higher IL-6 (r =.16, 
P =.059). Pre-pregnancy BMI was negatively correlated 
with oxidative stress (r=-.18, P =.004) and positively cor-
related with IL-6 (r =.20, P <.001).

Telomere length, oxidative stress, and inflammation
Adjusting for maternal age, gestational age, race/eth-
nicity, pre-pregnancy BMI, and income to needs, 
higher oxidative stress was associated with longer TL 
(b = 0.18 ± 0.07; Holm-adjusted P =.022) such that a one 
unit increase in oxidative stress predicted an additional 
180 bps of TL (Table 2).

With the same covariate adjustments, higher inflam-
mation measured as IL-6 was associated with longer TL 
(b = 0.72 ± 0.17; Holm-adjusted P =.0001); each additional 

unit increase in IL-6 predicted a 720 bps longer TL 
(Table 3).

Controlling for inflammation, oxidative stress remained 
predictive of longer TL (b = 0.18 ± 0.07; Holm-adjusted 
P =.022) adjusting for all other covariates (Table  4). 
Similarly, controlling for oxidative stress, inflamma-
tion predicted longer TL (b = 0.68 ± 0.17; Holm-adjusted 
P =.0002). An interaction term between oxidative stress 
and inflammation was not significantly associated 
with TL (b = 0.14 ± 0.16; P =.86) adjusting for all other 
covariates.

Table 2  Estimates and standard errors for oxidative stress 
predicting TL
Model Oxidative Stress

b±SE p-val Model R2

Model 1 (Oxidative Stress) 0.14 (0.07) 0.070 0.04
Model 2 (+ maternal age) 0.14 (0.07) 0.067 0.05
Model 3 (+ gestational age) 0.14 (0.07) 0.069 0.05
Model 4 (+ race/ethnicity) 0.17 (0.07) 0.022 0.11
Model 5 (+ maternal BMI) 0.18 (0.07) 0.022 0.11
Model 6 (+ income to needs) 0.18 (0.07) 0.022* 0.11
*Holm-adjusted p-value

Table 3  Estimates and standard errors for inflammation 
predicting TL
Model Inflammation (IL-6)

b±SE p-val Model R2

Model 1 (IL-6) 0.71 (0.16) < 0.0001 0.19
Model 2 (+ maternal age) 0.73 (0.16) < 0.0001 0.19
Model 3 (+ gestational age) 0.74 (0.17) < 0.0001 0.19
Model 4 (+ race/ethnicity) 0.71 (0.17) < 0.0001 0.21
Model 5 (+ maternal BMI) 0.72 (0.17) < 0.0001 0.22
Model 6 (+ income to needs) 0.72 (0.17) 0.0001* 0.22
*Holm-adjusted p-value

Table 4  Estimates and standard errors for oxidative stress and 
inflammation predicting TL
Model R2 = 0.27 b±SE p-val
Oxidative Stress 0.18 (0.07) 0.022*
IL-6 0.68 (0.17) 0.0002*
Maternal Age (years) 0.01 (0.02) 0.72
Gestational Age (days) -0.002 (0.004) 0.64
Race/Ethnicity (ref = non-Hispanic White)
Non-Hispanic Black 0.54 (0.28) 0.052
Other 0.06 (0.38) 0.86
Maternal BMI -0.01 (0.05) 0.77
Income to Needs Ratio -0.01 (0.05) 0.86
*Holm-adjusted p-value

Fig. 1  Correlations among TL, predictors, and demographic variables; red = negative correlation, blue = positive correlation, darkness of color indicates 
strength. Correlations meeting P <.05 are bold. See Supplemental File S6 for full correlations and p-values
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Discussion
We investigated oxidative stress and inflammation as 
predictors of TL in a cohort of women with normative 
pregnancies. Our analysis revealed that higher oxida-
tive stress, as measured by the first principal component 
derived from a set of oxidative stress-related metabolites, 
was significantly associated with longer TL. Similarly, 
higher IL-6, a marker of inflammation, was also associ-
ated with longer TL. These associations remained when 
controlling for each other and other covariates, suggest-
ing independent effects of oxidative stress and inflamma-
tion on TL during healthy pregnancies.

The positive associations between oxidative stress and 
TL and inflammation and TL observed in our study con-
trasts with the commonly held view that increases in 
these factors typically lead to telomere shortening [14, 
59, 60]. However, it is important to consider that dur-
ing pregnancy, the physiological and biochemical envi-
ronment is highly dynamic and regulated differently 
compared to the non-pregnant state [16, 21, 61]. For the 
non-pregnant individual, increased oxidative stress is 
related to telomere damage and shortening [6]. However, 
pregnancy induces adaptive responses that may upregu-
late telomere repair and elongation mechanisms, leading 
to longer telomeres despite elevated oxidative stress and 
inflammation [13]. Furthermore, the role of inflamma-
tion in pregnancy is complex and a gradual increase in 
circulating inflammatory mediators, such as IL-6, may be 
associated with a healthy pregnancy [62]. 

If increased oxidative stress and inflammation are 
indicative of a healthily progressing pregnancy, higher 
levels of both factors may be more likely in individuals 
with longer TL in our sample of non-high-risk healthy 
pregnancies, as longer TL is also associated with healthy 
aging. Oxidative stress and inflammation may reflect 
adaptive processes during pregnancy, where such cellu-
lar stressors trigger compensatory telomere maintenance 
mechanisms to support fetal development and maternal 
health. Alternatively, longer TL may be an indicator of 
overall cellular health, which could correlate with higher 
oxidative stress and inflammation in individuals experi-
encing healthy pregnancies. Further research is needed 
to better understand directionality among these factors, 
how mechanisms of TL regulation operate during preg-
nancy, and their implications for maternal and child 
health.

Our findings contribute to the growing body of litera-
ture on the determinants of TL during pregnancy and 
underscore the importance of understanding oxida-
tive stress and inflammation as potential indicators of 
future maternal health outcomes. Pregnancy can act as 
a physiological stress test that reveals underlying suscep-
tibilities to future age-related diseases [61, 63]. Under-
standing relationships among TL, oxidative stress, and 

inflammation during pregnancy may help predict the 
likelihood of developing diseases influenced by these fac-
tors later in life.

Our study has several strengths, including the use of 
advanced metabolomic profiling and comprehensive 
assessment of factors known to interact with the telo-
mere system. The carefully controlled design of the study, 
including selection of a representative mix of low- and 
high- income women for each race/ethnicity category, 
enhances the robustness of our findings as both income 
and race/ethnicity are known to influence telomeres, oxi-
dative stress, and inflammation. However, our study also 
has limitations. Saliva contains a variety of cell types, 
and the TL of cells in saliva will vary depending on the 
relative concentrations of these cell types. Because our 
study did not control for cell type composition in saliva, 
this represents a potential source of variability in our 
findings. Future studies incorporating cell composition 
adjustments or alternative tissue sources for TL measure-
ment would provide more robust insights into these asso-
ciations. Our sample size, while sufficient for the analyses 
conducted, may limit the generalizability of our find-
ings. Further limiting the generalizability of our study, 
women pregnant with multiple fetuses, severe pregnancy 
complications, or birthing complications were excluded 
from recruitment and therefore our sample likely reflects 
mechanisms operating in a subset of normative, healthy 
pregnancies. Additionally, the cross-sectional nature of 
our analysis precludes causal inferences or conclusions 
about directionality among our variables. Future research 
should aim to replicate our findings in larger cohorts 
beginning with assessment prior to pregnancy. Longitu-
dinal studies are needed to elucidate the causal pathways 
linking oxidative stress, inflammation, and TL dur-
ing pregnancy and beyond into the postpartum period. 
Investigating the potential interactive effects of oxidative 
stress and inflammation on telomere dynamics across 
different stages of pregnancy and later into the life course 
could provide deeper insights into the mechanisms driv-
ing these associations.

In conclusion, our study provides evidence that higher 
oxidative stress and elevated inflammation are associated 
with longer telomere length in healthy pregnant women. 
These findings underscore the importance of considering 
the unique physiological and developmental contexts of 
individuals when studying the determinants of telomere 
length. Understanding the interactions among oxidative 
stress, inflammation, and telomere biology during preg-
nancy may have significant implications for maternal 
health, potentially informing strategies to optimize future 
health outcomes for both mother and child.

Abbreviations
TL	� Telomere length
aTL	� Absolute telomere length
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