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Abstract 

Background Predicting preeclampsia (PE) within the first 16 weeks of gestation is difficult due to various risk factors, 
poorly understood causes and likely multiple pathogenic phenotypes of preeclampsia. 

Objectives In this study, we aimed to develop prediction models for early-onset preeclampsia (EPE) and late-onset preec-
lampsia (LPE) respectively using clinical data, metabolome and proteome analyses on plasma samples and laboratory data.

Methods We retrospectively recruited 56 EPE, 50 LPE patients and 92 normotensive controls from three tertiary 
hospitals and used clinical and laboratory data in early pregnancy. Models for EPE and LPE were fitted with the use 
of patient’ clinical, multi-omics and laboratory data.

Results By comparing multi-omics and laboratory test variables between EPE, LPE and healthy controls, we identi-
fied sets of differentially expressed biomarkers, including 49 and 33 metabolites, 28 and 36 proteins as well as 5 and 7 
laboratory variables associated with EPE and LPE respectively. Using the random forest algorithm, we developed 
a prediction model using seven clinical factors, seven metabolites, five laboratory test variables. The model yielded 
the highest accuracy for EPE prediction with good sensitivity (87.5%, 95% confidence interval [CI]: 67.64%-97.34%) 
and specificity (94.1%, 95% CI: 80.32%-99.28%). We also developed a prediction model that exhibited high accuracy 
in separating LPE from controls (sensitivity: 66.67%, 95% CI: 43.03%-85.41%; specificity: 94.12%, 95% CI: 80.32%-
99.28%) using seven clinical factors, five metabolites and eight proteins.

Conclusion Our study has identified a set of significant omics and laboratory features for PE prediction. The established 
models yielded high prediction performance for preeclampsia risk from clinical, multi-omics and laboratory information.
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Introduction
Pre-eclampsia (PE) is a complex and heterogeneous mul-
tisystem disease characterized by new development of 
hypertension after 20 weeks of gestation and one of the 
PE-related complications, including proteinuria, mater-
nal organ dysfunction or uteroplacental dysfunction, 
such as angiogenic imbalance or fetal growth restric-
tion. The global incidence of PE is approximately 4.6%, 
ranging from 1% to 5.6% [1]. Pre-eclampsia is one of the 
most severe complications during pregnancy, leading to a 
large number of maternal and perinatal morbidities and 
mortalities [2]. An estimated 4 million pre-eclampsia 
cases occur annually, leading to the mortalities of over 
70,000 women and 500,000 babies worldwide [2, 3]. PE 
is commonly classified into two subgroups, including the 
early-onset PE (EPE) and late-onset PE (LPE), accord-
ing to the gestational weeks at clinical presentation (34 
weeks of gestation). There is an emerging evidence that 
EPE is thought to be a consequence of impaired placenta-
tion [4], whereas the metabolic syndrome with increased 
insulin resistance is the main pathophysiological pro-
cesses in LPE [5, 6].

Over the past three decades, though numerous studies 
have been performed to investigate the pathophysiology 
of preeclampsia and the understanding of the disease has 
been remarkably improved, it remains not completely 
understood with respect to specific biological processes 
implicated in the development of PE. Accurate prediction 
of PE in early pregnancy has remained highly challeng-
ing, possible reasons might include incomplete under-
standing of the disease, a variety of risk factors, and likely 
different pathogenic phenotypes of PE [7, 8]. The rapid 
development of high-throughput omics assays has ena-
bled integrated analyses of the high-dimensional multi-
omics data [9, 10] and may capture complex dynamic 
processes implicated in the preeclampsia. Furthermore, 
the most predictive features are probably discovered from 
high-dimensional multi-omics using machine-learning 
methods, which might accelerate the development of 
more precise prediction models. Two recent studies have 
investigated the predictive value of laboratory data for PE 
and their models presented a relatively poor performance 
for PE screening [11, 12], however, these studies didn’t 
include liver and kidney dysfunction markers which are 
important predictors for PE in early pregnancy [13–15]. 
So far, it remains not completely understood regarding 
the predictive values of the laboratory markers alone and 
in combination with multi-omics markers.

In this study, we performed proteome, metabolome 
assays on a set of biospecimens collected retrospectively 
from preeclamptic and normotensive pregnant women 
and a multi-omics data analysis to discover sets of metab-
olites and proteins predictive of PE in early pregnancy; 

and then, we performed a joint analysis of the multi-
omics data with the available clinical/laboratory data to 
establish integrated predictive models based on a small 
number of clinical characteristics, protein and metabo-
lite biomarkers and laboratory test variables. Finally, we 
compared prediction capabilities of different combina-
tions of predictors to achieve the best accuracy for early 
and accurate detection of PE in pregnant women and 
eventually guide therapeutic intervention.

Methods and materials
Participants and study design
Maternal peripheral blood (5 mL) was collected in Streck 
Cell Free DNA BCT ® blood collection tubes (Streck, 
La Vista, NE, USA) and stored in the refrigerators at 4 
degrees for non-invasive prenatal test (NIPT) and pro-
cessed within four days. The remaining plasma samples 
were stored in the refrigerators at − 20 degree. We ret-
rospectively reviewed the medical records of all pregnant 
women who underwent NIPT tests at 11–15+6 gesta-
tional weeks in Zhuhai Maternal and Child Health Hospi-
tal, Shenzhen Bao’an District Maternal and Child Health 
Hospital, Jiangmen Central Hospital between January 1, 
2019, and December 30, 2021 and recruited 56 EPE, 50 
LPE patients and 92 normotensive controls. Maternal 
characteristics, demographics, gestational ages at deliv-
ery and birth weight were retrospectively retrieved from 
medical records by the physicians. The participants were 
randomly split into two datasets, including the train-
ing set and test set at a ratio of 3:2. The training set was 
used to identify and select potential protein and metabo-
lite biomarkers and train the models for predicting PE. 
The test set was utilized to confirm the proteomic and 
metabolomics results and assess the performance of the 
established models (Fig. 1). Informed consent was waived 
by the Ethics Committees of Beijing Genomics Institute. 
This study was approved by the Ethics Committees of 
Beijing Genomics Institute (BGI-IRB 22026). All meth-
ods were performed in accordance with the Declaration 
of Helsinki.

The PE patients were diagnosed and enrolled in this 
study following the guidelines of the International Soci-
ety for the Study of Hypertension in Pregnancy [2]. These 
patients developed high blood pressure after 20 gesta-
tional weeks, with the systolic blood pressure above 140 
mm Hg and/or the diastolic blood pressure above 90 mm 
Hg on at least two occasions 4 h apart; PE patients also 
presented proteinuria of 300 mg or more in 24 h, in case 
of lack of 24 h urine protein quantitation, two readings 
of at least + + on dipstick analysis of urine specimens 
were required for the diagnosis of PE. EPE and LPE were 
classified based on the clinical manifestations of preec-
lampsia developed before and after 34 weeks of gestation, 
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respectively. Healthy control was defined as a full-term 
pregnancy without obstetric, medical or surgical compli-
cations during pregnancy.

Plasma proteome profiling by LC–MS/MS
Plasma samples were processed with SPE columns 
(Waters, USA) for enrichment of low-abundance pro-
teins as mentioned in previous reports [16, 17]. Proteins 
were subsequently reduced by dithiothreitol in 56 °C 
water bath for 30 min and alkylated by iodoacetamide 

in the darkroom at room temperature for 30 min. After 
dilution, proteins were digested by trypsin (Promega, 
USA) and desalting using Strata-X column (Agela, 
China). All samples were then conducted by Orbitrap 
Lumos mass spectrometer (Thermo Scientific, San Jose, 
USA) coupled with an Ultimate 3000 UHPLC liquid 
chromatography (Thermo Scientific, San Jose, USA). 
Peptide separation was performed using a self-packed 
analytical column (1.7 µm, 150 mm x 30 cm) at a flow 
rate of 500 nL/min. The mobile phase consisted of two 

Fig. 1 The schematic workflow of this study. 198 pregnancies were enrolled from 2019 to 2021 in this study, these participants comprise 56 EPE, 50 
LPE and 92 healthy controls. Clinical and laboratory data of each participant were retrieved from health information system by physicians. Plasma 
samples were collected and underwent proteome and metabolome assays according to the manufacturer’s instructions. Protein and metabolite 
expression were analyzed using the Spectronaut software with the default parameters. Then differentially expressed proteins and metabolites 
were identified, followed by GO and KEGG pathway enrichment analysis. The total data were split into the training and test sets at a ratio of 3:2, 
then feature importance analysis was performed on all proteomic and metabolic biomarkers in the training dataset. The top ten most important 
metabolic or proteomic biomarkers were selected to build 968 predictor combinations (> 2 biomarkers) separately. The training dataset 
was randomly split into an internal training set (ITS) and internal validation set (IVS) at a ratio of 2:1. For each combination of metabolic or proteomic 
predictors, a random forest model was built in the ITS and validated in the IVS. The process was repeated 10 times, generating 10 prediction models 
and their corresponding area under the curves (AUC) values. The feature combination with highest mean AUC value in the IVS was considered 
as the optimal set of biomarkers for the construction of the prediction models in the training set. Lastly, the final models were established using 
different combinations of clinical factors, the optimal combination of proteomic, metabolic biomarkers and laboratory test variables in the training 
dataset, the performances of the established models were independently evaluated in the test dataset
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steps: phase A containing 0.1% formic acid and 2% ace-
tonitrile in water, and phase B comprising 0.1% for-
mic acid in acetonitrile with a 50-min elution gradient. 
The settings were as follows: 0–5 min, 5% B; 5–45 min, 
5–25% B; 45–55 min, 25–35% B. The MS1 mass range 
was set at 400–1250 m/z with a resolution of 60,000 and 
a maximum injection time of 50 ms. The mass range of 
400–1250 m/z was split into 45 continuous windows for 
MS2 scans with resolution setting as 30,000 and auto-
matic gain control (AGC) of 1E6 for the DIA setting. 
Normalized collision energy of MS2 was assigned to 
22.5, 25, and 27.5. The DIA-NN software [18] was used 
for DIA data analysis with self-built plasma spectral 
library using plasma from pregnant subjects containing 
4,979 proteins and 34,268 precursors). The FDR cutoff 
was set at 1% for both peptide and protein levels.

Targeted metabolites quantification by LC–MS/MS
Sample preparation
Targeted metabolites quantitative detection was per-
formed using BGI HM400 kit. Calibrator I was reconsti-
tuted with 150 μL of 50% methanol solution and mixed 
with 150 μL Calibrator II, and the mixture was shaken 
at room temperature for 20 min at 1200 rpm. 100 μL of 
the mixture was taken out and diluted with 75% metha-
nol solution as follows: 1/2, 1/4, 1/8, 1/16, 1/32, 1/160, 
1/320, 1/640, 1/1280, 1/2560 to obtain 11 concentration 
gradient calibrator mixtures. 20 μL of ultrapure water 
was added to well A1 of a 96-well plate; 20 μL calibrator 
mixed solutions of 11 concentrations were added to wells 
A2 to A12 according to the concentration from low to 
high; 20 μL of plasma samples were added to other wells. 
The internal standard I was reconstituted with 1  mL of 
50% methanol, and then added to 13 mL of methanol to 
obtain the sample release agent. Then, 120µL of sample 
release agent was added to each of the above wells. The 
plate was shaken at 10 °C 600 rpm for 20 min and centri-
fuged at 4000 g for 20 min at 4 °C. After centrifugation, 
30 µL of the supernatant was transferred to a new 96-well 
plate.

3 mL of derivatization reagent diluent was added into 
the derivatization reagent bottle, the mixture was shaken 
to dissolve, the derivatization reagent working solu-
tion was obtained. 3  mL of the EDC diluent was added 
to the EDC reagent bottle, the powder was dissolved to 
obtain the EDC working solution. 20 µL of derivatiza-
tion reagent working solution and 20 µL of EDC working 
solution were added sequentially to each well of the new 
96-well plate containing supernatant. The plate was cov-
ered with an aluminum film, placed in a constant tem-
perature shaker and shaken at 40 °C 1200 rpm for 60 min. 
After the reaction was completed, the plate was cooled 
to room temperature and centrifuged at 2000 g for 5 min. 

30 µL reaction solution was transferred to another new 
96-well plate, 90 µL of 50% methanol was added to each 
well. The plate was covered with an aluminum film and 
mixed at 10 °C 600 rpm for 5 min.

LC–MS Acquisition and data quantification
Metabolites extracted from plasma samples and derivat-
ized were detected and quantified using targeted profil-
ing strategies analysis strategy by LC–MS platform [19]. 
The 96-well plate finally obtained by the above prepara-
tion, which is covered by aluminum film can be directly 
used for LC–MS detection. QC samples were prepared 
by pooling equal volumes of each sample to evaluate the 
reproducibility of the analysis. Quantification of samples 
were then conducted by SCIEX Triple Quad 6500 mass 
spectrometer coupled with an Waters ACQUITY ICLASS 
UPLC using the MRM mode, and chromatographic sepa-
ration was performed on a Waters ACQUITY UPLC BEH 
C18 1.7 μm 2.1 × 100 mm column at a flow rate of 0.4 mL/
min. The mobile phase consisted of two parts: phase A 
containing 0.1% formic acid in water; phase B consisting 
of 70% acetonitrile and 30% isopropanol with a 18-min 
elution gradient. The settings were as follows: 0–1 min, 
5% B; 1–5 min, 5–30%B; 5–9 min, 30–50% B; 9–11 min, 
50–78%B; 11–13.5 min, 78–95%B; 13.5–14 min; 95–100% 
B; 14–16 min, 100%B; 16–16.1 min, 100–5%B; 16.1–18 
min, 5%B. The mass spectrometry method included posi-
tive/negative ion methods. All ion transitions and corre-
sponding parameters were set according to the methods 
provided by the kit. Batch sequence was edited according 
to the sample format in instruction manual. After detec-
tion, format conversion of the wiff data was performed. 
Mass spectrometry data were quantified using the 
HMQuant quantitative software.

Differential expression analysis and pathway enrichment 
analysis
Principal components analysis on the proteome or 
metabolome data matrix was performed using the 
prcomp function in R 3.6.0. Samples whose principal 
component 1 and 2 values are within mean ± 3*stand-
ard deviation (SD) of principal component 1 and 2 val-
ues were included in the downstream analysis. This step 
eliminated 3 EPE, 5 LPE and 3 healthy control samples 
from five mass spectrometry batches (Figure S1). Differ-
entially expressed metabolites and proteins were identi-
fied using Wilcoxon rank sum test following the cutoff 
of P < 0.05. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis on identified 
metabolites was carried out using MetaboAnalyst [20]. 
Over-representation analysis of the metabolites was per-
formed using the hypergeometric test in MetaboAnalyst. 
P value < 0.05 was considered as statistically significant. 
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Gene ontology (GO) term enrichment analysis on the 
identified differentially expressed proteins was con-
ducted using topology-based Gene Ontology scoring 
(topGo) [21], an R software package. P value < 0.05 was 
considered as statistically significant. Proteome pathway 
enrichment analysis was performed using the online tool 
g:profiler [22]. Adjusted p value < 0.05 was considered as 
statistically significant. Correlations between metabo-
lites and proteins predicted significantly differentially 
expressed between EPE and LPE samples were analyzed 
using cor.test. Metabolite-protein interaction network 
was built with igraph using the metabolite-protein inter-
actions with correlation coefficient above 0.2.

Analysis of clinical and laboratory data
All participants underwent routine laboratory tests in early 
pregnancy, their clinical and laboratory data were retrieved 
from health information system by physicians. The clinical 
data analyzed in the study consist of participant’ age, body 
mass index (BMI), diastolic blood pressure(DBP), systolic 
blood pressure(SBP), birth times, recurrent pregnancy loss 
(RPL, > 2 times), twin pregnancy, in vitro fertilization(IVF), 
past medical history (PMH) which involves at least one of 
the following complications: diabetes mellitus, PE, family 
history of PE, chronic hypertension, systemic lupus ery-
thematosus and antiphospholipid syndrome, birth weight 
and gestational weeks at birth. BMI, DBP and SBP values 
were measured between 11 and 15 + 6 weeks of gestation. 
Mean arterial pressure (MAP) was calculated following the 
equation below [23]:

in which, PP is the difference between systolic and dias-
tolic blood pressure. The laboratory data include 46 rou-
tine prenatal laboratory test results from routine blood 
test, hepatic and renal function tests, routine urine test, 
urine sediments analysis, hepatitis B antigens and anti-
bodies. The laboratory data have an average missing rate 
of 23.66% across 46 prenatal laboratory test results. Miss-
ing values were replaced with the median value of each 
laboratory test variable. Fisher exact test and Wilcoxon 
sum rank test were utilized to investigate categorical and 
continuous variables respectively. P < 0.05 was consid-
ered statistically significant.

Feature selection with the Boruta algorithm
The Boruta algorithm was established to investigate 
the predictive importance of variables in a classifica-
tion framework. It involves duplicating and shuffling 
features to eliminate correlations with the response. A 

MAP = DBP+ PP×
(27.07+ 0.181× DBP+ 2.303)

100

random forest classifier is then applied to the extended 
dataset, collecting z-score values for variable impor-
tance. A two-sided test compares the importance of 
each real variable with the maximum z-score value of 
shadow variables (MZSA). Variables showing signifi-
cantly higher importance than MZSA are considered 
important, while those with significantly lower impor-
tance are deemed unimportant. Unimportant features 
and shadow attributes are permanently removed from 
the analysis. These steps are repeated until all attributes 
have their importance values [24].

The establishment and validation of random forest models
Machine-learning analyses consist of two main steps, 
including the predictor selection step and model devel-
opment step. Firstly, in order to minimize the impact 
of the predictor scale difference on prediction models, 
patient’ age, BMI, MAP, omics and laboratory test vari-
ables were normalized by division of raw values by their 
corresponding median values of healthy controls. Then, 
the top ten most important proteomic or metabolic bio-
markers evaluated by the Boruta algorithm were selected 
and combined randomly to establish 968 combinations 
of proteomic or metabolic biomarkers (> 2 biomarkers) 
respectively. The training set was split into an inter-
nal training dataset and internal validation dataset at a 
ratio of 2:1. Each combination of omics biomarkers was 
utilized to establish a random forest model in the inter-
nal training set and its performance was evaluated in 
the internal validation set. The process was repeated 10 
times, generating 10 prediction models and their cor-
responding area under the curves (AUC) values. Pro-
teomic/metabolic predictors with highest mean AUC 
value in the internal validation set was deemed most 
predictive for PE. Secondly, prediction models were 
developed for clinical factors dataset, to investigate pos-
sible gains from integration of clinical, proteomic, meta-
bolic biomarkers and laboratory test predictors, random 
forest models that take different combinations of clini-
cal characteristics, omics and laboratory test variables 
as input were fit and independently verified in the test 
set. The receiver operating characteristic curves (ROC) 
of the classifiers were drawn and AUC values were calcu-
lated with the python package sklearn [25]. Correlations 
between predictors and risk scores predicted by the ran-
dom forest models were analyzed using cor.test and visu-
alized using the R package pheatmap.

Results
Identification of clinical risk factors for PE
Maternal characteristics, demographics, birth weight and 
gestational ages at delivery are shown in Table  1. There 
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was no significant difference in gestational weeks at sam-
pling between LPE and control groups (Table 1, P > 0.05, 
Wilcoxon rank sum test). As compared with healthy con-
trols, the EPE and LPE patients presented an older age, 
higher BMI and MAP values, higher prevalence of twin 
pregnancies-all known risks for PE (Table 1, P < 0.05 for 
all cases, Wilcoxon rank sum test or Fisher exact test). 
Additionally, we observed the participants with RPL, 
PMH and IVF were more likely to develop PE, however, 
the result didn’t reach statistical significance, probably 
because the sample size of this study is relatively small. 
As for the comparison between the EPE and LPE women, 
we didn’t observe there were significant differences in 
age, BMI, MAP, and other clinical factors except birth 
weight and gestational ages at delivery between the two 
subtypes of PE samples (Table S1).

Identification of metabolic biomarkers for PE
First, we aimed to identify the PE-associated metabo-
lites and performed differential expression analysis in 
the training set. In the metabolome set containing 165 
metabolites, 43 metabolites were significantly differen-
tially expressed between EPE and heathy controls, with 
35 upregulated and 8 downregulated (P value < 0.05, Wil-
coxon rank-sum test, Fig.  2A). L-Malic acid, erythronic 
acid, palmitoylcarnitine, ornithine, 2-Hydroxy- 3-meth-
ylbutyric acid were the top five most significantly dif-
ferentially expressed metabolites (Fig.  2B-F), Pathway 

enrichment analysis on these metabolic markers uncov-
ered the following pathways (p < 0.05): Arginine biosyn-
thesis, Tyrosine metabolism, Citrate cycle (TCA cycle), 
Alanine, aspartate and glutamate metabolism, beta-
Alanine metabolism (Fig.  2G, the hypergeometric test, 
P value < 0.05). With respect to the metabolites associ-
ated with LPE, we identified 33 metabolites showing 
significant difference in metabolite expression between 
LPE and heathy controls (Fig.  2H, P value < 0.05, Wil-
coxon rank sum test), of which, Indole- 3-butyric acid, 
tartaric acid, levulinic acid, 2-Hydroxy- 2-methylbutyric 
acid and m-Coumaric acid rank the top five (Fig.  2I-
M). These metabolites were significantly enriched in 12 
KEGG pathways, such as Alanine, aspartate and gluta-
mate metabolism, Citrate cycle (TCA cycle), Arginine 
and proline metabolism, beta-Alanine metabolism and 
Phenylalanine, tyrosine and tryptophan biosynthesis 
(Fig.  2N, the hypergeometric test, P value < 0.05). Fur-
ther analysis of the differentially expressed metabolites 
revealed 17 metabolites were differentially expressed 
in both EPE and LPE, such as ornithine, 2-Hydroxy- 
3-methylbutyric acid, 2-Hydroxy- 2-methylbutyric acid, 
homovanillic acid. While, 26 and 16 metabolites were dif-
ferentially expressed in only EPE, such as palmitoylcarni-
tine and stearylcarnitine(C18) and LPE respectively, such 
as l-Pipecolic acid and tartaric acid (Figure S2). We also 
compared differences in the identified metabolic mark-
ers between the EPE and LPE samples, Gentisic acid, 

Table 1 Comparison of maternal obstetric characteristics and pregnancy outcome of the women who did and did not develop PE 
and healthy pregnant women

Comparison of maternal obstetric characteristics and pregnancy outcome was carried out between each PE type and healthy control
* , **, *** denotes P value < 0.05, < 0.01 and < 0.001 respectively. Recurrent pregnancy loss is defined as a woman who has more than 2 pregnancy losses. Past medical 
history denotes a woman has at least one of the following complications: medical history of pregnancy diabetes, pre-eclampsia, family history of pre-eclampsia, 
chronic hypertension, systemic lupus erythematosus and antiphospholipid syndrome

Clinical feature EPE
(n = 53)

LPE
(n = 45)

Control
(n = 89)

Gestational weeks at sampling 13.28 ± 0.94** 13.73 ± 1.07 13.89 ± 1.18

Age at sampling 32.47 ± 5.21*** 30.78 ± 4.56 29.5 ± 3.71

BMI 22.19 ± 3.24*** 22.07 ± 5.6* 19.77 ± 4.21

MAP 92.91 ± 10.05*** 89.93 ± 9.15*** 81.83 ± 8.69

Primiparous woman No 22(41.51%) 13(28.89%) 41(46.07%)

Yes 31(58.49%) 32(71.11%) 48(53.93%)

Recurrent pregnancy loss No 42**(79.25%) 39(86.67%) 85(95.51%)

Yes 11(20.75%) 6(13.33%) 4(4.49%)

Past medical history No 50(94.34%) 45(100%) 89(100%)

Yes 3(5.66%) 0 0

IVF No 45 (84.91%) 37 (82.22%) 83 (93.%)

Yes 8 (15.09%) 8 (17.78%) 6 (6.74%)

Twin pregnancy No 46*** (86.79%) 42* (93.33%) 89 (100%)

Yes 7 (13.21%) 3 (6.67%) 0

Gestational age at delivery (weeks) 32.06 ± 3.03*** 38.02 ± 1.55*** 39.02 ± 1.03

Birthweight (g) 1558.3 ± 615.77*** 2760.67 ± 480.19*** 3185 ± 335.61
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D-Glucose, Tartaric acid and L-Glutamine were signifi-
cantly up-regulated, Trehalose, Palmitoylcarnitine and 
Stearylcarnitine(C18) were significantly down-regulated 
in LPE samples as compared to EPE ones (P < 0.05 for all 
cases, Wilcoxon rank sum test, Figure S3).

Identification of proteomic biomarkers for PE
In the proteome set containing 474 proteins, in 
early pregnancy, 28 proteins (15 upregulated and 13 

downregulated) exhibited expression changes sig-
nificantly associated with EPE in the training dataset 
as compared to healthy controls (P value < 0.05, Wil-
coxon rank sum test, Fig.  3A). Superoxide dismutase 3 
(SOD3), Macrophage migration inhibitory (MIF) fac-
tor, Neurogranin (NRGN), Hemoglobin Subunit Delta 
(HBD), Vasorin (VASN) were the top five most signifi-
cantly differentially expressed proteins (Fig.  3B-F). GO 
term enrichment analysis on these proteins identified 

Fig. 2 Analysis of differentially expressed metabolites related with PE. A. Volcano plot of differentially expressed metabolites and associated 
P values and log2 fold change values for EPE patients. The dashed line represents P value < 0.05. Down, Ns, Up denote down-regulated, 
not significant, up-regulated metabolites respectively. ****: p < 0.0001. B-F. The expression differences of top five most differentially expressed 
metabolites between EPE patients and controls. G. the KEGG pathways significantly enriched for differentially expressed metabolites in the EPE 
cohort. H. Volcano plot of differentially expressed metabolites and associated P values and log2 fold change values for LPE patients. I-M. The 
expression differences of top five most differentially expressed metabolites between LPE patients and healthy controls (***: p < 0.001, ****: p < 
0.0001). N. the KEGG pathways significantly enriched for differentially expressed metabolites in the LPE cohort
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3 significant GO terms, cellular response to stimulus 
(GO:0051716), ion transport (GO:0006811), response 
to stress (GO:0006950) (Figure S4, Fisher’s exact test, P 
value < 0.05). Further analysis of the 3 GO terms revealed 
that cellular response to stimulus (GO:0051716) and 
response to stress (GO:0006950) were downstream bio-
logical responses to stimulus (GO:0050896) (Figure S4). 
Pathway enrichment analysis on these proteins uncov-
ered the following pathways: KEGG root term, African 
trypanosomiasis, Malaria, Complement and coagula-
tion cascades, Staphylococcus aureus infection (Fig. 3G, 
Fisher’s exact test, P value < 0.05). With respect to the 
proteins associated with LPE, we identified 36 proteins 
showing significant difference in protein expression 

between LPE and heathy controls, of which, Apolipo-
protein E (Apo-E), Junction Plakoglobin (JUP), Annexin 
A2(ANXA2), Fatty acid binding protein 5 (FABP5) and 
Proteoglycan 4 (PRG4) rank the top five (Fig.  3H-M, P 
value < 0.05, Wilcoxon rank sum test). These proteins 
were significantly enriched in 55 GO terms (Figure S5, 
Fisher’s exact test, P value < 0.05) and 8 KEGG path-
ways (Fig.  3N, Fisher’s exact test, P value < 0.05), such 
as KEGG root term, Staphylococcus aureus infection, 
Estrogen signaling pathway, African trypanosomiasis 
and Coronavirus disease—COVID- 19. Further analysis 
showed that 10 proteins were differentially expressed in 
both EPE and LPE, such as MIF, Hemoglobin Subunit 
Alpha 1 (HBA1), Hemoglobin Subunit Beta (HBB), HBD, 

Fig. 3 Analysis of differentially expressed proteins related with PE. A. Volcano plot of differentially expressed proteins and associated P values 
and log2 fold change values for EPE patients. B-F. The expression differences of top five most differentially expressed proteins between EPE patients 
and controls. **: p < 0.01. G. the KEGG pathways significantly enriched for differentially expressed proteins in the EPE cohort. H. Volcano plot 
of differentially expressed proteins and associated P values and log2 fold change values for LPE patients. The dashed line represents P value < 0.05. 
I-M. The expression differences of top five most differentially expressed proteins between LPE patients and healthy controls (**: p < 0.01, ***: p < 
0.001). N. The KEGG pathways significantly enriched for differentially expressed proteins in the LPE cohort
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and Complement Factor D (CFD). Additionally, 18 and 
26 proteins were differentially expressed in only EPE and 
LPE, respectively (Figure S6). Additionally, we identified 
five up-regulated proteins, including APOE, GP5, PRG4, 
PSG4, SOD3, and four down-regulated proteins, includ-
ing FABP5, NRGN, RPLP2, TXN in LPE samples as com-
pared to EPE ones (P < 0.05 for all cases, Wilcoxon rank 
sum test, Figure S7). We performed interaction analy-
sis between the above mentioned 7 metabolomic and 9 
proteomic markers significantly differentially expressed 
between EPE and LPE samples. FABP5 and D-Glucose 
presented higher frequencies of interactions with sur-
rounding proteins and metabolites separately, suggesting 
they may play an important role in the pathophysiologi-
cal mechanism of PE (Figure S8).

Identifying laboratory test variables for PE
Forty-six prenatal laboratory test results were obtained 
from routine prenatal laboratory data in early pregnancy. 
A total of 5 laboratory test variables were significantly 
different between EPE and healthy controls (P < 0.05, 
Wilcoxon rank sum test or Fisher exact test, Table  S2), 
Creatinine (CRE), Eosinophils (EO), monocytes (MO) are 
the top three lab test variables showing the largest dif-
ference. Moreover, 7 clinical laboratory test results were 
found associated with LPE, with CRE, MO and hema-
tocrit (Hct) ranking the top three (P < 0.05, Wilcoxon 
rank sum test or Fisher exact test, Table S3). Four labo-
ratory test variables, CRE, EO, lymphocytes (LY), MO, 
were differentially expressed in both EPE and LPE, while, 
Hepatitis B surface antigen (HBsAg) and three laboratory 
variables consisting of Hct, white blood cell (WBC), crys-
tals (XTAL) were only differentially expressed in EPE and 
LPE respectively (Figure S9). As for the comparison of lab 
parameters between the EPE and LPE women, we didn’t 
observe there were significant differences in lab mark-
ers between the two subtypes of PE samples (Table S4). 
On the basis of the above findings, missing values of the 
identified laboratory markers were replaced with medi-
ans values (Table  S5) and used to build the predictive 
models.

Prediction of preeclampsia in early pregnancy
First, we analyzed feature importance of differentially 
expressed metabolites and proteins using the Boruta 
algorithm in the training dataset. L-Glutamine, eryth-
ronic acid, 3-Indolebutyric acid, l-Malic acid, levulinic 
acid, l-Alpha-aminobutyric acid, 2-Hydroxy- 3-methylb-
utyric acid, stearylcarnitine(C18), ornithine and palmi-
toylcarnitine were top ten most informative metabolites 
selected by the Boruta algorithm (Figure S10 A). HBD, 
CFD, MIF, VASN, Tenascin C (TNC), NRGN, Alpha 
Hemoglobin Stabilizing Protein (AHSP), Pregnancy Spe-
cific Beta- 1-Glycoprotein 4(PSG4), Coiled-Coil Domain 
Containing 126(CCDC126), SOD3 were top ten most 
important proteomic biomarkers for EPE prediction 
(Figure S10B). Then, we selected the top ten omics bio-
markers and established separately 968 random combi-
nations to investigate the optimal combination of omics 
biomarkers to predict EPE using a three-fold cross vali-
dation method (Fig.  4A). The AUC values of 968 ran-
dom forest models followed a normal distribution in the 
internal validation set. The random forest model with 
metabolic predictors comprising stearylcarnitine(C18), 
2-Hydroxy- 3-methylbutyric acid, levulinic acid, l-Malic 
acid, 3-Indolebutyric acid, l-Glutamine and ornithine 
presented the highest mean AUC value in the internal 
validation set (Fig. 4B). The seven proteins consisting of 
TNC, VASN, MIF, CFD, HBD, AHSP, SOD3 were the 
optimal combination of proteomic predictors (Fig.  4B). 
Secondly, we established random forest models which 
take different combinations of predictors including seven 
clinical variables (age, BMI, IVF, RPL, PMH, twin preg-
nancy, MAP), the most predictive omics biomarkers and 
laboratory test results and evaluated their performances 
in the test set. The model that incorporated clinical fac-
tors, metabolic and laboratory test biomarkers (herein 
after referred to as the EPE model) presented the high-
est mean AUC value (mean AUC ± SD = 0.8816 ± 0.0077, 
Fig.  4C and D), outperforming predictions from each 
separate and combined model (Fig. 4C and D). The EPE 
model distinguished EPE patients from controls in early 
pregnancy with good sensitivity (87.5%, 95% confidence 

(See figure on next page.)
Fig. 4 The establishment and validation of the EPE models. A. The top ten most important metabolic and proteomic biomarkers were selected 
to build 968 predictor combinations separately, the three-fold cross validation method was utilized to develop and validate random forest model 
for each combination of omics predictors. B. QQ plot shows the AUC values of random forest models for all combinations of omics predictors. The 
metabolic predictors comprising stearylcarnitine(C18), 2-Hydroxy- 3-methylbutyric acid, levulinic acid, l-Malic acid, 3-Indolebutyric acid, l-Glutamine 
and ornithine showed the highest mean AUC value in the internal validation set, the seven proteins consisting of TNC, VASN, MIF, CFD, HBD, AHSP, 
SOD3 were the optimal combination of proteomic predictors for EPE prediction. C. Comparison of performance of machine-learning models 
in terms of the AUC values in the training and testsets. Clin: Clinical factors, Lab: laboratory test variables, met: metabolites, pro: proteins. D. ROC 
curves for the optimal EPE model in the training and test datasets. E. Spearman correlation between predictors and prediction scores obtained 
from the EPE model in the whole dataset. The vertical bar represents correlation coefficients, with red and blue showing high and low correlation 
respectively
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Fig. 4 (See legend on previous page.)
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interval [CI]: 67.64%− 97.34%) and specificity (94.1%, 
95% CI: 80.32%− 99.28%, Table  2, Table  S6) in the test 
set. Moreover, the correlations between each predictor 
and prediction model scores were analyzed, the highest 
correlation was with 2-Hydroxy- 3-methylbutyric acid, 
followed by l-Malic acid, ornithine, stearylcarnitine(C18) 
and MAP (r > 0.5, p < 0.001 for all cases, Fig.  4E), sug-
gesting the model captures mostly metabolite expression 
differences.

Following the same strategy, we identified top ten most 
important omics predictors associated with LPE (Fig-
ure S11). The levulinic acid, tartaric acid, l-Malic acid, 
2-Hydroxy- 2-methylbutyric acid and l-Pipecolic acid 
were the optimal combination of predictors for LPE 
prediction (Figure S11 A and Figure S12 A). The model 
comprising eight proteomic markers, APOE, S100 Cal-
cium Binding Protein A4 (S100 A4), Ribosomal Protein 
Lateral Stalk Subunit P2(RPLP2), PRG4, Neuraminidase 
2(NEU2), JUP, ATPase 13 A3(ATP13 A3) and FABP5, 
presented the highest mean AUC value (Figure S12 A). 
Then, we established various LPE models using clini-
cal factors, omics biomarkers and lab test variables, and 
identified the model consisting of clinical factors, the 
optimal metabolic and proteomic biomarkers (herein 
after referred to as the LPE model) performed best in the 
prediction of LPE in the test set (mean AUC ± SD: 0.8793 
± 0.0114, Figure S12B and C). The LPE model exhibited 
high accuracy in classifying LPE patients from controls 
in early pregnancy (sensitivity: 66.67%, 95% CI: 43.03%− 
85.41%; specificity: 94.12%, 95% CI: 80.32%− 99.28%, 
Table S7) in the test set. The predictor APOE, exhibited 
highest correlation with risk score predicted by the LPE 
model, followed by MAP, S100 A4, l-Malic acid, PRG4 (r 
> 0.40, p < 0.001 for all cases, Figure S12D), indicating the 
model captures largely differences in multi-omics bio-
marker expression and maternal characteristics. Lastly, 
we evaluated the feature importance of the final models, 
as shown in Figure S13, the top 5 most important predic-
tors were Stearylcarnitine(C18), L-Malic acid, Levulinic 

acid, MAP, 2-Hydroxy- 2-methylbutyric acid for the 
EPE model and 2-Hydroxy- 2-methylbutyric acid, MAP, 
Levulinic acid, Tartaric acid, RPLP2 for the LPE model. 
2-Hydroxy- 2-methylbutyric acid, MAP, Levulinic acid 
were critical predictors for both EPE and LPE models, 
while, Stearylcarnitine(C18) and Tartaric acid were spe-
cifically predictive of EPE and LPE models respectively.

Discussion
In the present study, we systematically investigated the 
predictive values of various clinical characteristics and 
routine prenatal laboratory test parameters for different 
subtypes of PE in early pregnancy using all available clini-
cal and laboratory data from six hospitals. We confirmed 
that pregnant women with higher MAP and BMI, IVF, all 
known PE risk factors [3], had a significantly higher risk 
for PE than those with lower MAP, BMI and without IVF. 
The incidence of PE is approximately 9% in twin pregnan-
cies, representing a three-fold increase compared to sin-
gleton pregnancies [26], which is in line with our study. 
Our study also found that participants with RPL are more 
likely to develop EPE. Several studies have investigated 
the relationship between RPL and PE. These studies 
revealed that RPL is strongly associated with preterm PE 
[27, 28]. Trogstad et al. reported a significantly elevated 
risk of PE in cases of RPL, only when there was a history 
of assisted reproduction [29]. These results suggest twin 
pregnancies and RPL are risk factors for PE development.

In the present study, we identified sets of metabolites 
that exhibited significantly different concentrations in PE 
cases relative to normal controls. Several metabolites are 
informative for both EPE and LPE prediction and known 
metabolic biomarkers in PE, such as 2-Hydroxy- 3-meth-
ylbutyric acid [30], ornithine [31]. Some metabolic bio-
markers have been uncovered for the first time in this 
study, including levulinic acid, l-Malic acid, 3-Indolebu-
tyric acid, homovanillic acid. The arginine biosynthesis 
pathway has been identified as one of the main pathways 
associated with preeclampsia, as arginine is a precursor 
of nitric oxide, a potent endothelial-derived vasodilator 
that is implicated in the pathophysiology of preeclampsia 
[32]. Additionally, the alanine, aspartate, glutamate, and 
glutamine metabolic pathway was found to be another 
significant metabolic pathway in PE. The glutamine-
cycling pathway is a major factor in the development of 
metabolic risk [33]. Abnormalities in glutamate metabo-
lism indicate the involvement of liver in global metabolic 
regulation, due to its relatedness with aminotransferase 
reactions that initiate the metabolism of the majority of 
amino acids [34, 35]. 26 metabolites, such as palmitoyl-
carnitine and stearylcarnitine(C18), were only differen-
tially expressed in EPE, 16 metabolite markers, such as 
l-Pipecolic acid and tartaric acid, were only differentially 

Table 2 The confusion matrices of binary results of the EPE 
model in the test set of 24 EPE and 34 healthy participants

EPE Control

Predicted EPE 21 2

Predicted control 3 32

Sensitivity 87.5% (95% CI, 67.64%− 97.34%)

Specificity 94.12% (95% CI, 80.32%− 99.28%)

Positive predictive value 91.3% (95% CI, 73.07%− 97.60%)

Negative predictive value 91.43% (95% CI, 78.67%− 96.86%)

Cutoff 0.34
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expressed in LPE, demonstrating the metabolic processes 
involved in the pathogenesis of EPE may largely differ 
from those of LPE.

The proteome analysis uncovered 28 proteins signifi-
cantly differentially expressed between EPE and normal 
controls, seven proteins identified by the Boruta model 
are candidate biomarkers of PE. MIF, HBA1, HBB, HBD 
were found to be significantly increased in both EPE and 
LPE as compared to controls. MIF is a proinflammatory 
cytokine, which plays a critical role in the regulation of 
the innate immune response and normal placental devel-
opment processes [36]. MIF serum expression was sig-
nificantly up-regulated in preeclamptic pregnancies than 
in control group, which is in line with previous studies 
[37, 38]. HBA1, HBB, HBD encode alpha 1, beta and delta 
subunits of hemoglobin and play a key role in oxygen car-
rier activity and oxygen binding [39]. Placental hypoxia 
is a major characteristics of preeclampsia, which may 
stimulate the increased expression of HBA1, HBB, HBD 
in the plasma from PE patients [40]. Pregnancy Spe-
cific Glycoprotein (PSG)4 and PSG9 were significantly 
down-regulated in EPE samples but not in LPE samples. 
PSG9 stimulates increase in FoxP3 + regulatory T-Cells 
through the TGF-β1 pathway [41] and regulates platelet-
fibrinogen interactions and has antiplatelet activity [42], 
supporting the role of PSG9 in immune regulation. APOE 
was significantly up-regulated and specific biomarker for 
LPE. APOE is well-known for its protective role in ath-
erosclerosis, and APOE-knockout mouse model is often 
used as pre-clinical atherosclerosis model and more rel-
evant to LPE [43, 44]. The analysis of laboratory test vari-
ables identified 5 and 7 test results significantly different 
between EPE, LPE and healthy controls respectively. 
Many variables have been reported for their association 
with PE, such as LY, WBC, MO, CRE, HCT [11, 12, 45]. 
Furthermore, the addition of these laboratory variables to 
the EPE model did further improve model performance, 
suggesting these laboratory variables provide additional 
value in PE prediction.

Previous studies show that an integrated multi-omics 
model further improved prediction accuracy as com-
pared to single omics models for PE patients [46, 47]. In 
this study, the PE model that integrated clinical factors, 
multi-omics biomarkers outperformed clinical factors-
only and single omics models for PE prediction, further 
validating the results. Furthermore, we identified the 
addition of laboratory test variables to the prediction 
models yielded highest prediction accuracies early in 
pregnancy, suggesting they provide additional value to PE 
prediction.

Previous models to early predict preeclampsia have 
incorporated maternal characteristics, uterine artery 
Doppler measurements and specific protein biomarkers, 

including Placental growth factor (PlGF) and Pregnancy-
associated plasma protein-A (PAPP-A) [48–50]. How-
ever, the model shows poorer performance in screening 
PE in Asian population than in Western pregnant women 
[51–54]. Cheng, et al. reported that the combined model 
showed detection rates of 72 and 55% for early and late 
PE, respectively, for a 10% false positive rate, which dem-
onstrates poorer performance than our models [51]. PE 
is an extremely heterogenous disorder, making it’s bio-
logically implausible to distinguish this disorder from 
normal using a single biomarker or a single omics data. 
Our integrated models have successfully captured vari-
ations in maternal characteristics, multi-omics expres-
sion, and laboratory test variables, resulting in superior 
performance in predicting PE compared to models that 
only consider clinical factors or single omics data. The 
metabolic and proteomic markers identified in this study 
can be easily measured using LC–MS/MS technology in 
clinical settings. Additionally, the laboratory test varia-
bles are derived from routine prenatal tests, making them 
readily accessible. By incorporating metabolic and prot-
eomic markers alongside laboratory test results, the EPE 
and LPE models offer novel approaches for predicting PE 
in early pregnancy. These models can identify pregnant 
women who are at a higher risk of developing PE, ena-
bling timely intervention. It is recommended that women 
predicted to be at a high risk receive low-dose aspirin 
treatment, which may significantly reduce the incidence 
of PE and enhance pregnancy outcomes for both mother 
and fetus.

Our integrated models have demonstrated the high-
est accuracies in distinguishing PE patients from healthy 
controls, surpassing the performance of clinical factors-
only and single omics models. These results further 
emphasize the strength of multi-omics biomarkers in 
predicting PE. Despite progresses, this study has several 
limitations. First of all, the blood samples used for prot-
eomic and metabolomic measurement were non-fasting, 
which might impact the results. Given the small number 
of samples and hospitals and the study’s focus on a spe-
cific Chinese cohort, the identified multi-omics biomark-
ers and laboratory test variables might not be stable and 
generalizable. Future studies will be needed to address 
the generalizability of these findings to other populations 
with different demographic or genetic backgrounds. Sec-
ondly, the precise role of these changes in metabolites, 
proteins, and laboratory test parameters in the onset 
and progression of preeclampsia remains incompletely 
understood. Further studies will be necessary to fully 
characterize the functional implications and molecu-
lar mechanisms underlying these changes. Thirdly, the 
developed models require further validation using a 
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larger cohort of pregnant women, we are going to address 
these issues in future studies.

Conclusion
In conclusion, we identified a number of potential multi-
omics and laboratory test biomarkers for PE prediction. 
We developed EPE and LPE prediction models based on 
clinical characteristics, multi-omics and laboratory test 
variables to screening for PE in early pregnancy. These 
models have high sensitivity and specificity, showing the 
potential to further improve early diagnosis of PE and 
eventually guide therapeutic interventions in clinical 
settings.
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