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Abstract
Background The occurrence of short birth intervals among reproductive-age women in East Africa is a critical 
public health issue, contributing to maternal and child health risks. Identifying the key factors that predict short birth 
intervals can help design targeted interventions to reduce these risks. Hence, this study aimed to predict short birth 
intervals and identify their determinants using supervised machine learning models.

Method This study employs machine learning algorithms to predict short birth intervals among reproductive-age 
women in East Africa, using a dataset from Demographic and Health Surveys. The dataset undergoes preprocessing 
steps to handle missing values, encode categorical variables, perform feature selection, and integrate data and 
normalize numerical features. Four machine learning models, including logistic regression, decision trees, random 
forests, and some machine learning models, including logistic regression, decision trees, random forests, and naive 
Bayes, are trained and evaluated to predict short birth intervals. Model performance is assessed using metrics such as 
accuracy, precision, recall, F1-score, and AUC-ROC used to ensure reliable results.

Result The machine learning models identified several key factors that significantly predict short birth intervals 
among reproductive-age women in East Africa. The Random Forest models demonstrated the highest accuracy 
(79.4%), precision (79.0%), F-score (84.0%), ROC curve (83.8%), and recall (91.0%), with feature importance analysis 
highlighting maternal age, educational status, parity, use of family planning, and access to healthcare as the most 
influential predictors. The findings underscore the importance of targeted interventions addressing healthcare access 
and family planning to reduce the risks associated with short birth intervals in East African countries.

Conclusion The study demonstrates that machine learning models can effectively identify key predictors of short 
birth intervals among reproductive-age women in East Africa, providing valuable insights for designing targeted 
public health interventions to improve maternal and child health outcomes in East Africa.
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Introduction
Birth interval is an important part of family planning (FP) 
and fertility control [1]. According to the World Health 
Organization (WHO), short birth intervals are defined 
as less than 33 months between two consecutive live 
births [2, 3]. This issue has received special attention in 
public health and family planning due to its impact on 
fertility, maternal, and child health [4]. The practice of 
short birth spacing varies globally. It increases the risk of 
adverse effects on maternal and child health outcomes, 
including insufficient folate levels, inadequate breastfeed-
ing for the child, infections in the cervix, competition 
between siblings, insufficient uterine repair, and aberrant 
endometrial blood vessel remodeling [5, 6]. In addition, 
closely spaced births result in high fertility, which raises 
the demand for resources from women and inhibits eco-
nomic development efforts by restricting women’s par-
ticipation [4, 7].

Annually, there are more than 2.5  million perinatal 
deaths worldwide, 95% of which occur in developing 
countries, and short intervals between births are directly 
related to a higher risk of unfavorable perinatal outcomes 
[8]. Similar to this, numerous poor perinatal outcomes 
have been attributed to short birth intervals in sub-Saha-
ran African countries [9, 10]. The highest incidence of 
unfavorable pregnancy outcomes was perinatal events, 
which include stillbirth, low birth weight, preterm birth, 
and small for gestational age, and these consequences are 
widespread in developing countries (9, 5).

Almost 200  million reproductive-age women in low- 
and middle-income countries want to have space or 
limit their pregnancies, and access to family planning 
is especially limited in East African countries [5]. East 
African countries have the highest rate of short birth 
gaps (Uganda: 13.4% [11], Ethiopia: 58.5% [12], Tanza-
nia: 48.4% [2], responsible for the huge burden of child 
and maternal mortality [13–15]. An estimated 1.6 million 
deaths of under-five mortality would be averted annually 
if all births spaced 24 months and above [16].

Previous studies found age, women’s health care deci-
sion-making autonomy, sex of household head, media 
exposure, maternal education, household wealth status, 
husband education, and health care access were the most 
significant predictors of short birth interval [5, 6, 10–13, 
17, 18].

Even though appropriate birth spacing is critical for 
the health of the mother and newborn, family planning 
is insufficiently utilized and not widely recognized in East 
African countries [19, 20]. Previous studies have focused 
on identifying the primary risk factors that contribute to 
short birth intervals and the effect of short birth inter-
vals on maternal and neonatal health by utilizing logis-
tic regression and other conventional statistical methods 

to identify and quantify predictors of birth intervals [16, 
21–23].

Traditional statistical methods often struggle with 
high-dimensional data, non-linear relationships, they 
often fall short in modeling complex, nonlinear interac-
tions between predictors and outcomes and complex 
interactions due to their reliance on predefined assump-
tions linearity, normality. These methods may also suf-
fer from overfitting and limited flexibility in capturing 
intricate patterns. In contrast, machine learning (ML) 
overcomes these limitations by automatically modeling 
non-linear relationships, handling large and complex 
datasets, improving prediction accuracy, and perform-
ing efficient feature selection. This study aims to address 
these gaps by leveraging ML techniques to enhance and 
develop model to predict shot birth interval, offering a 
more robust approach than traditional statistical meth-
ods [24]. ML algorithms are typically designed to make 
accurate predictions by learning from data, rather than 
relying on prior assumptions. By utilizing machine learn-
ing algorithms, this study uncovers hidden patterns and 
interactions within the data, leading to model building 
and a deeper understanding of the key determinants of 
birth intervals. The data-driven insights can inform evi-
dence-based decision-making and resource allocation for 
treatment-related services and policies. Hence, this study 
aimed to predict short birth intervals and identify their 
predictors using a supervised machine-learning model.

Methods
Population and eligibility criteria
All women between the ages of 15 and 49 who were of 
reproductive age served as the study’s source population. 
The study population consisted of women who had at 
least two consecutive live births over the five years prior 
to the survey.

Data source and sampling procedures
In this study, we used the most recent Demographic and 
Health Surveys (DHSs) dataset from 11 East African 
countries (Burundi, Ethiopia, Comoros, Uganda, Tanza-
nia, Mozambique, Madagascar, Zimbabwe, Kenya, Zam-
bia, and Malawi) as the source of the data for this study 
[25]. We accessed this data from the MEASURE DHS 
program by requesting the official database,  h t t p : / / w w w 
. d h s p r o g r a m . c o m     to obtain the data.

Among East African countries, only 11 countries were 
included in this study due to the absence of outcome 
variables, and it was not conducted DHS recently in the 
remaining countries. DHS data is a nationally represen-
tative household survey that is collected periodically in 
various groups. To select study participants, a two-stage 
stratified cluster sampling technique was used. In the 
first stage, a stratified sample by geographic region and 

http://www.dhsprogram.com
http://www.dhsprogram.com
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urban/rural areas within each region that entirely cov-
ers the target population of East Africa was used. In the 
second stage, households were selected using systematic 
random sampling in the selected EAs. In each selected 
household, mothers were interviewed with an individual 
questionnaire. After applying data preparation, 100,246 
weighted samples were included in this study.

Study variables and measurements
Dependent variables: In this study, the dependent vari-
able was birth spacing, categorized as short versus opti-
mal. The birth interval was defined as the time between 
the preceding birth and the index birth, measured in 
months from the mother’s previous childbirth to the cur-
rent birth. Therefore, it was dichotomized as 0 = “yes” 
(having a short birth interval) and 1 = “no” (having an 
optimal birth interval). Birth intervals were then catego-
rized as short birth intervals if they occurred within 33 
months of the preceding birth, and optimal birth inter-
vals if they occurred at 33 months or later.

Independent variables In this study, we used the fast 
recursive feature selection method to identify the inde-
pendent features.

Data analysis procedure
In this study, data processing, data analysis, and model 
building were carried out using Python, with libraries 
like Pandas for cleaning, encoding categorical variables, 
and normalizing numerical features. After splitting the 
data into training and testing sets using train_test_split, 
exploratory data analysis was performed with visualiza-
tions from matplotlib and seaborn to understand feature 
distributions and relationships. Models were built using 
scikit-learn, where algorithms such as Random Forest 
(RF), Decision Tree (DT), Logistic Regression (LR), and 
Naive Bayes (NB) were trained on the data. Hyperpa-
rameter tuning and model evaluation were carried out 
using techniques like grid search, and performance was 
assessed through metrics such as accuracy, precision, 
recall, and F1-score. Finally, we developed a predictive 
model that predicts the short birth interval and identifies 
its determinants, as shown in Fig. 1.

Data preprocessing
In this study, we employed key data preprocessing tech-
niques such as data cleaning, transformation, integration, 
feature selection, and discretization, which include han-
dling missing values, encoding categorical variables, and 
normalizing or scaling features. These steps ensure that 

Fig. 1 Overview of data pre-processing and model development to predict short birth interval
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data is properly prepared for building accurate and effi-
cient models.

Data cleaning
Data cleaning typically includes handling missing values 
through imputation or removal, removing outliers, and 
removing noise-missing values [26]. Additionally, dupli-
cate records were eliminated, and data was standardized 
or normalized to ensure uniformity, improving the mod-
el’s ability to learn effectively and accurately. Among the 
total number of data sets, 3.6% are missing data points. 
Features such as distance of health facility, health insur-
ance, unmet need, and husband education status have 
missing values. We used mode imputation for categorical 
variables to address these missing values.

Data transformation
In machine learning, data transformation refers to the 
process of changing or modifying raw data into a format 
that is more suitable for modeling [27]. In this study, we 
employed data normalization to transform features to a 
common scale, typically between 0 and 1. Additionally, 
we used one-hot encoding to transform categorical data 
into numerical.

Data discretization
Data discretization is a technique used to transform con-
tinuous data into discrete categories or intervals. It can 
help simplify the model, improve interpretability, and 
enhance performance in certain cases. In this study, we 
used equal-width binning, where the range of continuous 
values is divided into a set number of equal-width inter-
vals. The maternal age was discretized as 15–24, 25–34, 
and 35–49 years based on DHS guidelines [23].

Data integration
Data integration involves combining data from different 
sources or formats into a cohesive dataset suitable for 
analysis. In this study, datasets from 11 different sources 
in East African countries’ DHS databases were merged 
based on common determinants. This approach allows 
for the creation of a comprehensive dataset.

Feature selection
Feature selection is crucial, and machine-learning models 
such as RF, DT, LR, and NB can be used to rank features 
by their importance in predicting birth intervals. This 
helps in selecting the most impactful variables. In this 
study, we utilized Recursive Feature Elimination (RFE), a 
method in which features are recursively removed from 
the model based on their importance until the optimal 
subset of features is identified.

Mode selection
The predicted variable in this study was binary clas-
sification since the birth interval was divided into two 
“optimal” or “short.” For model building, four classifiers 
Random Forest, Decision Tree, Logistic Regression, and 
Naive Bayes—were used. The algorithms were chosen 
by previous research that used machine-learning meth-
ods to predict binary tasks [28, 29]. Random forests and 
decision trees are powerful for binary prediction due to 
their ability to capture complex, non-linear relationships 
in the data. Logistic regression and naive Bayes, on the 
other hand, are simpler models that provide probabilistic 
interpretations and are effective when the relationships 
between variables are linear or when assumptions like 
independence hold.

Data splitting
Data splitting is a vital part of machine learning to accu-
rately assess a model’s performance. The goal is to par-
tition the dataset into separate subsets for training and 
testing, allowing the model to be evaluated on its ability 
to generalize to new, unseen data and to reduce the risk 
of overfitting to the training set. In this study, we used 
the straightforward holdout method, designating 80% 
(800,197 cases) of the data for training the model and 
20% (200,049 cases) for testing its performance.

Model evaluation
The performance of the trained model was evaluated 
using the testing dataset. Then, the performance of the 
trained models was evaluated using the test set based 
on the criteria of accuracy score, ROC curve, precision 
(P), recall (R), and F-measure as follows: The confusion 
matrix is a matrix of N * N, where N is the number of pre-
dicted classes, and it displays the number of correct and 
incorrect predictions made by the classification model 
relative to the target value [30]. Subsequently, the test set 
was used to assess the trained models’ performance using 
the accuracy score, AUCROC curve, precision (P), recall 
(R), and F-measure criteria.

 Precision = (TP ) / (TP + FP )  (1)

 Recall = (TP ) / (TP + FN) (2)

 
F − Measure = (2 ∗ Precision ∗ Recall)

(Precision + Recall)  (3)

 
Accuracy =

(
(TP + TN)

(TP + TN + FP + FN)

)
× 100 (4)
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Results
Sociodemographic characteristics of the study participant
100,246 women of reproductive age who had more than 
one child were included in the study. The median age of 
women was 30 years (IQR), and approximately 73,272 
(73.0%) were rural residents, with 43.7% having a short 
birth space. Kenya and Malawi accounted for around 
18.7% and 15.1% of the women, respectively. 13,006 
(12.9%) of the women were between the ages of fifteen 
and twenty-four, while 57.0% had a short birth interval. 
24,235 (24.0%) had no formal education, whereas 45.9% 
had a short birth interval. Nearly half (46.7%) of the 
22,488 women with the poorest wealth level had short 
childbearing intervals. 43,603 (43.4%) of the total 100,246 
reproductive-age women had two to three births, 37.4% 
had a short birth interval, and 71,105 (71.0%) had an 
unmet demand for family planning (Table 1).

Class balancing
In order to balance the target features for this study, we 
applied the Synthetic Minority Oversampling Technique 
(SMOTE). This technique generates additional synthetic 
observations from the minority category in order to bal-
ance the unequal distribution of the outcome variable. 
Prior to SMOTE balancing, the optimal birth interval 
was 60,565 (60.4%), while the short birth interval was 
39,681 (39.9%). We obtained a balanced sample of opti-
mal birth interval with counts of label 60,565 (50) and 
short birth interval with counts of label 39,681 (50%) as 
shown in Fig. 2.

Identify the important determinants
Important features selection and impact of variables by 
reducing too many or unnecessary features, rank was a 
method for finding a subset of features. By limiting the 
number of features, feature selection was crucial for low-
ering learning costs. This study used recursive feature 
elimination. The dataset used in this study contained 25 
features. To identify the most significant ones, we used 
the fast version of RFE, which allows for flexibility in 
controlling the number of features retained and effec-
tively handles correlated features. The selected features 
included age, parity, country, wealth status, maternal 
educational status, sex of household head, media expo-
sure, unmet need, husband education status, and oth-
ers. The features with longer bars were associated with 
a higher predicted probability of a short birth interval, 
showing that these factors increase the likelihood of a 
short birth interval. Were as the feature with short bars 
these features were associated with a lower predicted 
probability of a short birth interval, as shown in Fig. 3.

Table 1 Description of the birth interval in East African 
countries, evidence from DHS (N = 100,246)
Urban 26,947(27.0) 9109(33.8) 17,865(72.2)
Maternal age
15–24 13,006(12.9) 7410(57.0) 5596(43.0)
25–34 445,243(44.4) 15,430(34.6) 29,113(63.4)
>=35 42,697(42.5) 16,841(39.4) 25,856(60.6)
Maternal education
No 24,235(24.0) 11,122(45.9) 13,113(54.2)
Primary 52,662(52.5) 20,945(39.8) 31,717(60.2)
Secondary 20,010(19.9) 6590(32.7) 13,420(67.3)
Higher 3339(3.3) 1024(30.6) 2315(69.4)
Husband education
No 14,481(14.4) 6,655(46.0) 7,826(54.0)
Primary 58,768(58.6) 23,601(41.1) 35,167 (59.9)
Secondary 22,230 (22.2) 7,852(35.3) 14,378(64.3)
Higher 4,767(4.7) 1,573(33.0) 3,194(67.0)
Wealth status
Poorest 22,488(22.4) 10,496(46.7) 11,992(53.3)
Poorer 19,522(19.4) 8418(43.1) 11,104(56.9)
Middle 19,049(19.0) 7559(39.7) 11,490(60.3)
Richer 19,346(19.0) 7024(36.3) 12,322(63.7)
Richest 19,841 (19.7) 6184(31.1) 13,657(68.9)
Media exposure
No 40,304 (40.2) 16,636 

(41.2)
23,668 (58.8)

Yes 59,942 (59.8) 23,045 
(38.4)

36,897 (61.6)

Sex of household head
Wife 29,524(29.4) 10,589(35.8) 18,935(64.2)
Husband 70,722(70.6) 29,092(41.1) 41,630(58.9)
Marital status
Single 2,028 (2.1) 618 (30.4) 1,410 (69.6)
Married 82,373 (82.1) 33,477 

(40.6)
48,896 (59.4)

Divorced/widowed/
separated

15,845 (15.8) 5,586 (35.2) 10,259 (64.8)

Parity
2–3 43,603(43.4) 16,319(37.4) 27,284(62.6)
4–5 29,414(29.3) 10,907(37.0) 18,507(63.0)
≥ 6 27,229(27.3) 12,455(45.7) 14,774(54.3)
Unmet need for family planning
No 29,141(29.0) 11,499(39.4) 17,642(60.6)
Yes 71,105(71.0) 28,182(39.6) 42,923(60.4)
Distance to health facility
Not a big problem 36,176(36.0) 14,902 

(31.1)
2127 (68.9)

Big problem 64,070(64.0) 24,479(38.2) 439,291(61.8)
Women health care decision making autonomy
Respondent alone 20,416(20.0) 7828(38.3) 12,588(51.7)
Jointly with husband/
partner

62,178(62.4) 24,442(39.3) 37,936(60.7)

Respondent/partner alone 17,652(17.6) 7611(43.1) 10,041(56.7)
Covered by health insurance
No 93,714(93.3) 37,422(40.0) 56,294(60.0)
Yes 6532(6.7) 2259(34.6) 4273(65.4)
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Comparing supervised machine-learning algorithm
The goal of this study was to develop a predictive model 
for short birth intervals and identify the key determi-
nants for evidence-based decision-making. Supervised 
machine learning algorithms, including RF, DT, LR, and 
NB, were utilized. The experiments were conducted using 
consistent testing parameters. Predictive performance 
was evaluated using four metrics: accuracy, F-measure, 
recall, and the AUC curve. After comparing the super-
vised machine learning models, random forest emerged 
as the top-performing model, achieving an accuracy of 
80%, precision of 79%, recall of 91%, an F-measure of 84%, 
and an AUC of 83.8%. The second-best algorithm was the 
decision tree, which achieved an accuracy of 75.3%, pre-
cision of 76%, recall of 88%, an F-measure of 81%, and 
an AUC of 82.7%. The least performing algorithm was 

logistic regression, which attained an accuracy of 63.2%, 
a recall of 87%, an F-measure of 74%, and an AUC of 
63.5%, as shown in Figs. 4; Table 2. We employed an auto-
mated approach for hyperparameter tuning by utilizing 
the GridSearchCV method. GridSearchCV takes in an 
estimator, a set of hyperparameters to be searched over, 
and a scoring method, and returns the best set of hyper-
parameters that maximizes the scoring method. Before 
using GridSearchCV, the accuracy was 75.1%; after 
applying hyperparameter tuning with n_estimators = 200, 
max_depth = 15, and min_samples_split = 5 accuracy was 
increased by 4.28% from 75.1 to 79.4%.

Model interpretation using SHAP values
In this study, we use SHAP values to explain the pre-
dictions made by a machine learning model, such as a 

Fig. 3 Important features selected from the dataset by recursive feature elimination

 

Fig. 2 Before and after applying SMOTE oversampling techniques
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random forest model, for predicting whether the birth 
interval is a binary classification: short interval and opti-
mal interval. SHAP values help us interpret how each fea-
ture contributes to the individual predictions, as well as 
the overall model behavior. In this study, we used SHAP 
values for model interpretation, since features that push 
the prediction higher compared to the base value have 
positive SHAP values, while features that push the pre-
diction lower have negative values. Therefore, for the 
first observation, the combination of the positive con-
tributions (in red) and the negative contributions (in 

blue) moves the expected value output to the final model 
output (f(x) = 0.217), classified as a negative class (short 
interval).The country was Zimbabwe, the parity was 2–3, 
and the age of the mother was 25–34; the distance of the 
health facility was fair, women had health care decision-
making by their husbands, the wealth status was poor, 
they had no media exposure, and the marital status was 
married all features associated with a higher likelihood of 
short birth intervals in this specific prediction shown in 
Fig. 5.

Discussion
In this study, we aimed to predict short birth intervals 
and identify their key determinants among reproductive-
age women in East Africa using a supervised machine-
learning model. The use of supervised machine learning 
models, such as random forest, decision tree, logistic 
regression, and naive Bayes, allowed for a robust and 
accurate prediction model. For this objective, four super-
vised machine-learning models were trained on balanced 
training data using a train-test split. Accuracy, AUC 
score, precision, recall, and F1 score were used to com-
pare the performance of classifier models. Random forest 
emerged as the best predictive model, with an accuracy 
performance of 79.4%, precision of 79.0%, an F1 score of 
84%, and AUROC of 84%. To date, no studies have been 
conducted utilizing supervised ML algorithms to pre-
dict short birth intervals and their determinants. Impor-
tant predictors’ are identified by using RFE methods. We 
found that the top five variables in line with other studies 
elsewhere age, parity, country, wealth status, and mater-
nal educational status were all the important variables 
for the prediction of short birth interval. For instance, 
when the age of women increased with short birth inter-
vals was decreased. It is consistent with studies [31, 32]. 
This might be because there are more opportunities as 

Table 2 Accuracy, precision, recall, and F-measure for the 
machine learning algorithms
Model Accuracy Precision Recall F1-Score AUC
Random forest 79.4 79.0 91.0 84.0 83.8
Decision tree 75.3 76.0 88.0 81.0 82.7
Logistic Regression 63.2 64.4 87.0 74.0 63.5
Naive Basis 70.0 72.0 81.0 76.0 71.9

Fig. 5 Waterfall plot displaying prediction positive and negative values for short birth interval

 

Fig. 4 AUC curve for machine learning model
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a woman gets older to interact with medical profession-
als, which could lead to health education initiatives that 
encourage better attitudes and advancements in family 
planning [33]. In addition, older mothers are knowledge-
able about and supportive of family planning services to 
have positive outcomes for both the health of the mother 
and the child. This study found that parity was an impor-
tant predictor of short birth intervals. Women who had 
2–3 had a higher risk of short birth intervals. It was sup-
ported by studies [34, 35], this could be women who are 
grand multipara have less desire for an extra child and 
therefore they use family planning methods [36]. Women 
with higher parity may be more likely to experience short 
birth intervals, especially if they did not have sufficient 
time to recover physically from the previous pregnancy 
before becoming pregnant again. Short birth intervals 
are associated with a higher risk of preterm birth, low 
birth weight, and developmental delays. According to the 
results, there were differences in birth interval rates by 
wealth status, with women who belonged to the poorest 
household having higher short birth intervals compared 
to women from the richest household immunization 
rates than rural residents. It was supported by previous 
studies [13, 37, 38], this might be because women from 
poor households have limited access to maternal health 
care services such as contraceptive use, and access to 
contraceptive services could contribute to the increased 
odds of a short birth interval among women belonging 
to the poorest household [39]. Additionally, women have 
Lower education is frequently associated with limited 
knowledge of family planning options, or less autonomy 
in decision-making around reproductive health. This 
can result in higher fertility rates and shorter intervals 
between births, especially if women lack access to fam-
ily planning services. Likewise, studies have found that 
maternal education is a major contributor to short birth 
intervals [5, 13, 25, 35, 38]. The possible explanations 
might be due to education, which could raise the mater-
nal and child health implications of short birth intervals 
and the likelihood of using reproductive health care ser-
vices to prolong inter-birth intervals [40, 41].

Women aged 15–24 are more likely to experience short 
birth intervals due to higher fertility, limited access to 
contraception or family planning resources, and not 
knowing family planning [42]. This could be attributed 
to the fact that a woman whose age is 15–24 has a high 
fertility rate as compared to their counterparts [43]. In 
addition, older mothers may also experience short birth 
intervals, often due to pressures to conceive before fer-
tility declines or the use of fertility treatments, despite 
reduced natural fertility. Several studies agreed with this 
finding [6, 44, 45].

Conclusion and recommendation
This study aimed to predict short birth intervals and 
identify their determinants among reproductive-aged 
women in East Africa using a supervised machine learn-
ing method. The random forest algorithm was found 
to be the best-performing machine learning algorithm 
model for predicting short birth intervals in East Africa. 
Important features for this prediction included age, 
parity, country, and wealth status, unmet need for fam-
ily planning, distance to health facilities, residence, and 
maternal educational status. To address the issue of short 
birth intervals, it is recommended that policymakers 
focus on enhancing maternal education, particularly in 
rural areas, and increase access to family planning ser-
vices. Interventions should be culturally sensitive, taking 
into account the unique social and economic contexts of 
East African countries. Strengthening healthcare infra-
structure, especially maternal and child health services, 
will also be critical in supporting women’s reproductive 
decisions. Additionally, incorporating machine-learning 
models into public health strategies could help design 
targeted interventions and improve long-term monitor-
ing of birth interval trends, ultimately contributing to 
better maternal and child health outcomes in East Africa. 
We recommended that policymakers take into account 
the findings of this research and provide a strategy for the 
optimization of birth intervals in low-income countries 
based on the relevant variables that have been identified. 
Even though a fascinating result was obtained, future 
works were required by applying alternative types of 
techniques with different parameters.

Strength and limitations
The use of machine learning algorithms to identify the 
best features for predicting short birth intervals among 
reproductive-age women in East Africa offers significant 
strengths. These models can handle large, complex datas-
ets and identify intricate patterns between factors such as 
age, parity, wealth status, maternal education, and coun-
try. Machine learning techniques like random forests and 
logistic regression uncovering non-linear relationships 
and interactions among these features, offering deeper 
insights than traditional statistical methods. Moreover, 
the adaptability of machine learning models allows for 
tailored interventions based on local contexts, and the 
ability to rank feature importance enables policymak-
ers to prioritize key variables in improving birth spac-
ing practices. However, this study has certain limitations 
because the DHS data collection is self-reported, which 
may have introduced some information biases.
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