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Abstract 

Background  Identifying the risk factors for low APGAR scores at birth is critical for improving neonatal outcomes 
and guiding clinical interventions.

Methods  This study aimed to develop a machine-learning model that predicts low APGAR scores by incorporat-
ing maternal, fetal, and perinatal factors in Wad Medani, Sudan. Using a Random Forest Classifier, we performed 
hyper-parameter optimization through Grid Search cross-validation (CV) to identify the best-performing model 
configuration.

Results  The optimized model achieved excellent predictive performance, as evidenced by high F1 scores, accuracy, 
and balanced precision-recall metrics on the test set. In addition to prediction, feature importance analysis was con-
ducted to identify the most influential risk factors contributing to low APGAR scores. Key predictors included gesta-
tional age, maternal BMI, mode of delivery, and history of previous complications such as stillbirth or abortion. Using 
5-fold cross-validation (CV), the random forest model performance scored accuracy at 96%, precision at 98%, recall 
at 97%, and F1-score at 97% when classifying infants with APGAR score.

Conclusion  This study underscores the importance of incorporating machine learning approaches in obstetric care 
to understand better and mitigate the risk factors associated with adverse neonatal outcomes, particularly low APGAR 
scores. The results provide a foundation for developing targeted interventions and improving prenatal care practices.
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Background
Low Appearance, Pulse, Grimace, Activity and Respi-
ration (APGAR) scores are influenced by a variety of 
maternal, delivery-related, and biological factors that 
can compromise neonatal health. The APGAR score, 

introduced by Dr. Virginia Apgar in 1952, is a rapid 
assessment tool used to evaluate newborn health imme-
diately after birth based on five criteria: Appearance, 
Pulse, Grimace response, Activity, and Respiration. A 
score below 7 at five minutes post-delivery is a critical 
indicator of potential health complications and is asso-
ciated with increased risks of neonatal morbidity and 
mortality [1]. Understanding the factors contributing to 
low APGAR scores is essential for healthcare providers, 
as these scores impact both immediate neonatal care and 
long-term health outcomes.

Maternal health conditions, such as inadequate pre-
natal care, gestational diabetes, hypertension, and sub-
stance use, significantly affect newborn APGAR scores 
[1]. Insufficient prenatal support is linked to higher rates 
of low APGAR scores, often necessitating extended 
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hospital stays and additional medical interventions. Con-
ditions like maternal substance abuse further exacerbate 
neonatal risks, leading to complications such as neona-
tal abstinence syndrome [1, 2]. Delivery-related factors, 
including the administration of labor medications and 
complications during childbirth, also play a critical role. 
Medications given to mothers during labor can affect 
neonatal physiology, while complications such as pro-
longed labor or emergency cesarean sections may jeop-
ardize the infant’s health [3, 4].

Biological factors, such as prematurity and congeni-
tal anomalies, are well-established contributors to low 
APGAR scores. Premature infants often face physiologi-
cal challenges, including underdeveloped organ systems, 
which can result in immediate instability [3]. Congenital 
malformations also compromise neonatal health, further 
lowering APGAR scores.

The implications of low APGAR scores extend beyond 
the neonatal period. Studies have shown that low scores 
are predictive of long-term developmental and neu-
rological challenges, such as cerebral palsy and cogni-
tive impairments [2, 5]. Infants with low scores face an 
elevated risk of lifelong disabilities and educational dif-
ficulties, emphasizing the importance of identifying 
and addressing contributing factors during prenatal and 
postnatal care. Comprehensive prenatal care and tar-
geted interventions, including early identification of 
high-risk pregnancies, are essential to improving neona-
tal outcomes and reducing the risks associated with low 
APGAR scores [6, 7].

Factors influencing low APGAR scores
Low APGAR scores often indicate underlying health 
issues in newborns and are influenced by a combina-
tion of demographic and obstetric factors. Understand-
ing these influences is critical for healthcare providers 
to assess and manage neonatal health effectively. Demo-
graphic factors such as maternal age, parental educa-
tion levels, place of residence, maternal occupation, and 
parental consanguinity significantly impact neonatal 
outcomes by shaping access to healthcare and resources. 
Obstetric factors, including parity, gestational age, 
maternal health status, body mass index (BMI), birth 
weight, mode of delivery, and the number of antenatal 
visits (particularly exceeding four), also play a crucial 
role. Additionally, a history of stillbirths, abortions, or 
previous cesarean sections further complicates neonatal 
outcomes.

Collecting and analyzing these demographic and 
obstetric data points from patient records allows health-
care providers to better understand their effects on neo-
natal health. Such insights enable targeted interventions 
to improve newborn health outcomes.

Efforts to improve the predictive accuracy of low 
APGAR scores have increasingly focused on identify-
ing relevant risk factors using both traditional statis-
tical methods and artificial intelligence (AI)-driven 
approaches. AI, particularly machine learning (ML), has 
gained significant traction in the medical field due to its 
ability to analyze large, complex datasets and uncover 
patterns that may be difficult to detect using conven-
tional methods. For example, studies have shown that 
ML algorithms can effectively predict low APGAR scores 
by analyzing predictors such as birth weight, maternal 
age, and gestational age [8].

Machine learning offers healthcare professionals a 
powerful tool to enhance clinical decision-making, 
reduce medical errors, and improve the accuracy of new-
born health assessments. By integrating ML into neonatal 
care, healthcare providers can better allocate resources, 
reduce workloads, and implement timely interventions 
for at-risk infants. Research has demonstrated that ML-
based models significantly enhance the predictive per-
formance of neonatal outcome assessments, contributing 
to improved clinical management and overall neonatal 
health [9, 10].

In summary, the integration of machine learning into 
neonatal care holds great promise for predicting low 
APGAR scores and guiding timely interventions. This 
study aims to harness ML techniques to identify key risk 
factors for low APGAR scores, ultimately improving neo-
natal health outcomes.

Methods
A cross-sectional study was conducted at Wad Medani 
Maternity Hospital, Sudan, from October to December 
2023. This tertiary care facility handles approximately 
6,800 deliveries annually. Data were collected from all 
women with singleton pregnancies who delivered dur-
ing the study period, excluding newborns with congeni-
tal anomalies to focus on external factors influencing 
APGAR scores. To analyze and predict low APGAR 
scores, the study utilized eight machine learning models: 
Logistic Regression (LR) [11], Decision Tree (DT) [12], 
Random Forest (RF) [13], Linear Support Vector Machine 
(SVM) [14], Radial Basis Function (RBF) SVM [15], Gra-
dient Boosting [16], K-Nearest Neighbors (KNN) [17], 
and Multilayer Perceptron (MLP) Neural Network [18].

Data collection and preprocessing
After obtaining informed consent, data were collected 
through face-to-face interviews using structured ques-
tionnaires. The questionnaires captured demographic 
factors such as the place of residence, maternal and 
paternal education levels, maternal age, parental con-
sanguinity, and maternal occupation. Obstetric factors 
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were also documented, including parity, gestational age, 
maternal health status, body mass index (BMI), birth 
weight, existing medical conditions, mode of delivery, 
history of previous cesarean sections, number of antena-
tal visits (with a focus on those exceeding four), and his-
tories of stillbirth and abortion.

Several preprocessing steps were performed to ensure 
the dataset was suitable for machine learning analysis:

•	 Handling Missing Values: Missing data were man-
aged through imputation or exclusion to maintain 
data integrity. Patients with missing data were han-
dled using two main strategies. First, rows with miss-
ing values in the target variable (Low_ApGAR​) were 
removed to ensure completeness of the outcome var-
iable. Second, for predictor variables, missing values 
in numeric columns were imputed with the column 
mean, while missing values in categorical columns 
were replaced with the column mode (most frequent 
value). These steps ensured a clean and complete 
dataset for model training and evaluation.

•	 Target Variable Transformation: The target variable, 
Low-ApGAR​, was converted into a binary format (0 
= normal, 1 = low) for classification purposes.

•	 Feature Selection and Encoding: Predictors (X) 
were defined, and categorical variables were encoded 
(e.g., one-hot encoding) to prepare the data for mod-
eling.

•	 Dataset Splitting: The dataset was divided into 
training (70%) and testing (30%) subsets to evaluate 
the generalizability of the models.

•	 Feature Scaling: Continuous variables were scaled to 
standardize their ranges, ensuring compatibility with 
algorithms sensitive to data magnitude, such as SVM 
and MLP.

Overview of machine learning classifiers
Below is a detailed explanation of the key classifiers uti-
lized in machine learning, including their strengths, limi-
tations, and ideal use cases:

Logistic regression
Logistic Regression (LR) is a straightforward classifica-
tion algorithm capable of performing both binary and 
multiclass tasks. It estimates the probabilities of the tar-
get outcome by modeling the sigmoid function for the 
input features. Logistic regression works by estimating 
a linear relationship between features and the log-odds 
of the outcome, which is useful and easy to implement 
in smaller datasets. On the other hand, it does not work 
well with datasets that have features with non-linear 
relationships, and it is prone to multicollinearity and 

outlier problems if they are not filtered out properly dur-
ing preprocessing.

Support vector machine
Support Vector Machine (SVM) is one of the more pow-
erful algorithms because it can perform both linear and 
non-linear classification. It separates class labels by con-
structing a decision boundary (hyperplane) that maxi-
mizes the margin from the support vectors (the critical 
data points). A hyperplane is placed at the optimal posi-
tion to minimize the chance of overfitting within high 
dimensionality spaces. This algorithm does especially 
well with smaller datasets that have clear separation 
between the class labels. However, it is expensive compu-
tationally on larger datasets and requires fine tuning of 
hyperparameters.

Decision tree
Decision Tree (DT) model, similar to the linear models, 
is conceptually simple and can be understood easily with 
minimal features as it uses feature values to partition data 
into a tree structure. This means it is capable of handling 
relations that are not proportional together with their 
interactions. It is also suitable for datasets of a moderate 
size. On the other hand, visualizing its performance may 
be problematic. Moreover, decision trees tend to memo-
rize and perform poorly for data with noise or imbalance 
when compared to ensemble methods. These issues arise 
due to a higher-than-required depth of the tree.

Random forest
Random Forests (RF) belong to supervised learning algo-
rithms which create many decision trees and aggregate 
them using a method called bagging (bootstrap aggre-
gation). The Random Forest algorithm utilizes multiple 
decision trees in order to solve regression and classifi-
cation problems simultaneously. It reduces the risk of 
overfitting, is capable of non-linear relationships, and 
is feature importance ranking. When it comes to noisy 
data and mixed data types, it performs even better. The 
robustness of RF makes it very effective for classification 
and regression problems. On the downside, it is resource 
demanding with a small trade-off in interpretability when 
compared to sole decision trees.

Gradient boosting
The commences with Gradient Boosting, which gener-
ates trees in an iterative fashion, where each new tree is 
aimed towards correcting the errors of the previous tree 
by optimizing a loss function. As a result, it performs 
particularly well with both classification and regres-
sion tasks, since it maximizes predictive accuracy while 
capturing deep patterns. Furthermore, for Gradient 
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Boosting, training is comparatively slower in comparison 
to Random Forest, due to its sequential nature. Addi-
tionally, because of it sequential nature, tuning of hyper-
parameters like learning rate and depth of tree must be 
undertaken, or it will definitely lead to overfitting.

K‑nearest neighbors
K-Nearest Neighbors (K-NN), is an easy to use, non-
complex algorithm which determines the class of a data 
point based on the distance metric and majority of it 
closest neighbors, such as the Euclidian distance met-
ric. Intuitive and simple to use, K-NN excels in small 
datasets that contain cleanly cut apart classes, however, 
K-NN has negative scaling issues which makes it com-
putationally exhausting for large datasets to use, since it 
requires the prediction of the entire dataset. Addition-
ally, K-NN would require performing feature scaling, 
especially as dimensionality increases due to the curse of 
dimensionality.

MLP neural networks
A multilayer perceptron (MLP) is a supervised feed-for-
ward artificial neural network that consist of at least 3 
layers of nodes: an input layer, a hidden layer and a out-
put layer. They can learn highly complex and nonlinear 
patterns with Backpropagation for optimization. MLPs 

are very flexible and can approximate virtually any func-
tion with enough layers and neurons. Though, they need 
a huge amount of data, enough computational power, 
and too many hyper parameters tuning. If regularization 
techniques are not applied, they may overfit, especially 
on small datasets. Table  1 displays the key features of 
classifiers utilized in this study.

Evaluation metrics
Six key metrics were evaluated in the test set to assess 
each model’s diagnostic performance: the receiver oper-
ating characteristic curve (ROC), accuracy, precision, 
sensitivity, specificity, and F1 score. Given that the ROC 
curve is a widely recognized measure of a machine learn-
ing model’s predictive capability, it was designated as the 
primary performance metric. The ROC curve plots the 
true positive rate against the false positive rate at various 
thresholds, providing a comprehensive view of the mod-
el’s performance across different classification thresholds. 
Table  2 summarizes the description of each evaluation 
metric.

We employ a systematic and structured approach 
to identify the optimal configurations for each model. 
The process begins by defining a dictionary that maps 
each model to its respective hyperparameter grid. This 
includes a variety of classifiers such as LR, SVM, DT, RF, 

Table 1  Key features of classifiers utilized in this study

Classifier Key features

Logistic regression (LR) - Assumes a linear relationship between features and the target variable

- Simple, interpretable, and efficient for binary classification

- Struggles with nonlinear patterns

Support vector machine (SVM) - Effective for both linear and nonlinear classification with the use of kernels

- Robust to overfitting, especially in high-dimensional spaces

- Computationally expensive with large datasets

Decision tree (DT) - Easy to interpret and visualize

- Captures nonlinear relationships but prone to overfitting

- Performs well with small datasets but less robust for noisy data

Random forest (RF) - Ensemble of decision trees using bagging, reducing overfitting

- Handles complex, nonlinear patterns

- Robust to noise, multicollinearity, and mixed data types

- Provides feature importance rankings

Gradient boosting - Builds trees sequentially, focusing on correcting errors of previous trees

- High predictive accuracy but prone to overfitting without proper tuning

- Slower to train compared to RF

K-nearest neighbors (K-NN) - Instance-based learning; predicts based on the majority class of nearest neighbors

- Sensitive to feature scaling and high-dimensional data

- Simple but computationally expensive for large datasets

MLP neural networks - Multilayer perceptrons are powerful for capturing complex patterns

- Requires extensive tuning (e.g., layers, neurons, learning rate)

- Prone to overfitting, requires large datasets and significant computational resources
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Gradient Boosting, K-NN, and MLP neural networks. 
Each model is associated with specific hyperparameters 
that influence its learning process and performance, 
such as regularization strength, kernel type, tree depth, 
and the number of estimators. The code also sets up a 
directory for saving results, indicating a commitment 
to organized data management throughout the experi-
mentation process. We execute the hyperparameter tun-
ing using either Randomized Search CV or Grid Search 
CV, depending on the size of the hyperparameter grid. 
Randomized Search CV is preferred for larger grids, as 
it allows for more efficient parameter space explora-
tion by sampling a fixed number of parameter combina-
tions, thus reducing computational time. Conversely, for 
smaller grids, the exhaustive Grid-Search CV approach is 
utilized. Each model is fitted to the training data, and the 
best hyperparameter configuration is determined based 
on accuracy scores derived from cross-validation.

Results
ROC curves visually represent the trade-off between 
sensitivity (true positive rate) and specificity (1 - false 
positive rate). This allows for a comprehensive evalu-
ation of model efficacy in classifying low APGAR 
scores. The results, illustrated in Fig. 1, reveal distinct 
performance levels among the models tested, under-
scoring the importance of model selection in clinical 
prediction tasks. Among the models evaluated, the 
Random Forest emerged as the most effective clas-
sifier, achieving an AUC of 0.99. This performance 
reflects its ability to maintain high sensitivity with 
minimal false positives, making it particularly well-
suited for the binary classification task of predict-
ing low APGAR scores. The Linear Support Vector 
Machine (SVM) model closely followed, with an AUC 
of 0.99, demonstrating its robustness and reliability in 
capturing the underlying patterns associated with low 
APGAR scores. Logistic Regression also performed 

commendably, achieving an AUC of 0.97, which signi-
fies its effectiveness despite its simpler mathematical 
foundation compared to more complex models.

Conversely, the K-Nearest Neighbors (KNN) model 
exhibited the least favorable performance, with an AUC 
of 0.54, indicating a near-random classification capabil-
ity. This suggests potential limitations in the KNN algo-
rithm’s ability to differentiate between classes in this 
specific context effectively. The Multi-layer Perceptron 
(MLP) neural network achieved a moderate AUC of 
0.75, reflecting a reasonable classification performance, 
though still below the top-performing models. The ROC 
analysis underscores the efficacy of machine learning 
techniques in enhancing predictive accuracy for clini-
cal outcomes, particularly highlighting the superiority of 
models like Linear SVM and Random Forest in identify-
ing risk factors for low APGAR scores at birth.

The results shown in Fig.  2 indicate that the Random 
Forest models exhibited superior performance across all 
metrics, consistently achieving high scores in accuracy, 
precision, recall, and F1-score. This suggests that this 
model accurately classifies instances and effectively cap-
tures the underlying relationships between predictor var-
iables and the target outcome. In contrast, the K-Nearest 
Neighbors (KNN) model demonstrated relatively lower 
scores across these metrics, indicating challenges in its 
ability to classify low APGAR instances reliably. Over-
all, the evaluation metrics highlight the effectiveness of 
machine learning methodologies in clinical risk assess-
ment, underscoring the importance of selecting mod-
els that optimize both sensitivity and specificity for 
improved clinical outcomes. This multifaceted evalua-
tion under-scores the value of employing a range of met-
rics to understand model performance in predicting low 
APGAR scores at birth.

K‑folds cross‑validation results
Utilizing a K-Folds cross-validation [19] approach, the 
experiment ensures that the distribution of classes is 

Table 2  A summary of the statistical performance metrics used for model comparisons

a Where TP stands for true positives, TN for true negatives, FP for false positives and FN for false negatives

Metrics Formula Definition

Accuracy TP+TN

TP+TN+FP+FN

(a) It is the ratio of correctly predicted instances (both true positives and true negatives) to the total number 
of instances in the dataset, measuring the overall correctness of the model

Precision TP

TP+FP
It is the ratio of true positive predictions to the total number of positive predictions made by the model, indicating 
how accurate the model is when it predicts a positive class

Recall TN

TN+FP
It is the ratio of true positive predictions to the total actual positives in the dataset, measuring the model’s ability 
to identify all relevant instances of the positive class

Jaccard index TP

TP+FN+FP
It measures the similarity between two sets and is calculated as the size of the intersection divided by the size 
of the union of the predicted and true labels

F1-score 2·TP

2·TP+FP+FN
It is used as it emphasizes the lowest recall and precision values within each category
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preserved across each fold, thereby enhancing the reli-
ability of the results. Specifically, the dataset is divided 
into five distinct subsets, with shuffling applied to 

mitigate any potential bias from the order of the data. 
This method allows for a robust assessment of model 
performance. Each model is trained and validated on 

Fig. 1  The ROC curves of machine learning models on prediction of low APGAR scores at birth

Fig. 2  The performance of machine learning models
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different subsets of the data, facilitating a comprehen-
sive understanding of how well each model generalizes to 
unseen instances.

The evaluation process involves calculating multiple 
performance metrics, such as accuracy, precision, recall, 
and F1-score, across each fold for each model. The results 
illustrated in Fig.  3 show an exceptional performance 
of the Random Forest model in predicting low APGAR 
scores, as evidenced by consistently high scores across all 
evaluation metrics. Moreover, Fig. 4 illustrates the confu-
sion matrix of the confusion matrix of RF classification 
on low ASPGAR scores, while Table 3 provides detailed 
statistics on the RF performance.

SHAP analysis for random forest model
The SHAP summary plot (Fig.  5) visualizes the feature 
importance and their contributions to the Random For-
est model used to predict low APGAR scores. The plot 
reveals that birth_weight_of_newborn, BMI, and 
mode_delivery_final are the most influential fea-
tures, contributing significantly to the model’s predictive 
performance. These features exhibit high SHAP value 
magnitudes, indicating their substantial impact on the 
prediction of low APGAR scores. Secondary features 
such as age_year, parity, and status also play a 
moderate role, while factors like previous_CS and 

gestational_age_in_weeks show smaller con-
tributions. The x-axis of the plot represents the SHAP 
values, which indicate the magnitude and direction of 
each feature’s impact on the model’s predictions. Posi-
tive SHAP values push predictions toward low APGAR 
scores, while negative values push predictions toward 
normal APGAR scores. The color gradient (blue to red) 
encodes feature values, where lower feature values are 
blue, and higher values are red. For instance, higher 
birth_weight_of_newborn values (red) are asso-
ciated with normal APGAR scores, while lower birth 
weights (blue) increase the risk of low APGAR scores.

The distribution of SHAP values for key features, such 
as birth_weight_of_newborn and BMI, demon-
strates significant variability, showcasing their diverse 
influence across individual predictions. This variability 
indicates the complex, non-linear relationships captured 
by the Random Forest model. The analysis highlights the 
critical role of factors like birth weight, BMI, and mode 
of delivery in determining neonatal outcomes, empha-
sizing their importance in identifying the risk of low 
APGAR scores. By leveraging SHAP values, the study 
underscores the robustness of the Random Forest model 
in providing interpretable insights into the key predictors 
of neonatal health outcomes. These findings align with 
the study’s objective of employing machine learning to 

Fig. 3  The results of 10-fold cross-validation using random forest classification of low ASP- GAR scores
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enhance clinical decision-making and improve neonatal 
care practices.

Discussion
Despite advancements in healthcare technology, low 
APGAR scores at birth remain a significant concern due 
to their association with neonatal morbidity and mor-
tality. Traditionally, statistical methods have been used 
to identify risk factors; however, recent studies have 
highlighted the potential of ML algorithms to improve 
predictions by analyzing diverse datasets containing 
maternal and fetal characteristics, as well as cardioto-
cography (CTG) images [20, 21]. This study builds upon 
this growing body of research by applying ML algorithms 
to identify key factors influencing low APGAR scores. 
Additionally, the findings align with broader applications 
of machine learning in obstetric care, such as predicting 

nonreassuring fetal heart patterns and identifying risk 
factors for birth asphyxia [22, 23]. These innovative 
approaches demonstrate how machine learning can be 
leveraged to address a wide range of adverse neonatal 
outcomes.

Key findings and feature importance
The feature importance analysis from the RF classifier 
revealed that birth weight, gestational age, and maternal 
BMI are the most significant predictors of low APGAR 
scores. Birth weight, in particular, was the most impactful 
factor, aligning with existing studies such as McCormick 
et al. [24] and Moss and Latham [25], which demonstrate 
that both low birth weight (<2,500 grams) and high birth 
weight (>4,000 grams) are associated with poor neona-
tal outcomes. For instance, low birth weight increases 
the risk of respiratory distress and weak reflexes, while 
high birth weight is linked to delivery complications 
like shoulder dystocia and asphyxia [26]. These findings 
underscore the importance of meticulous prenatal moni-
toring to mitigate risks.

Maternal BMI was another critical factor influencing 
neonatal outcomes. Low BMI (<18.5 kg/m2 ) is associ-
ated with intrauterine growth restriction (IUGR) and 
preterm birth, while high BMI ( ≥ 30 kg/m2 ) is linked to 
gestational diabetes, preeclampsia, and delivery com-
plications [27]. Gestational age also plays a significant 
role, with preterm (<37 weeks) and post-term (>42 
weeks) births contributing to complications such as 

Fig. 4  The confusion matrix of random forest classification on low ASPGAR scores

Table 3  The classification results of the Random Forest (RF) 
classifier for each class in the test set

Class Evaluation Matrix

Precision (%) Recall (%) F1 Score (%) Support

0 1.00 0.96 0.98 119

1 0.72 1.00 0.84 13

Accuracy 0.96 132

Macro Avg 0.86 0.98 0.91 132

Weighted Avg 0.97 0.96 0.96 132
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respiratory distress and placental insufficiency. These 
results confirm that birth weight, BMI, and gestational 
age are critical for predicting neonatal outcomes and 
align with previous literature [24, 26].

In addition, our findings align with recent advance-
ments in machine learning applications for neonatal 
risk prediction. For example, a study by BMC Preg-
nancy and Childbirth [28] used machine learning mod-
els to identify risk factors for birth asphyxia. This study 
highlighted the critical role of gestational age, mode 
of delivery, and maternal complications in predicting 
adverse outcomes. The overlap in risk factors between 
birth asphyxia and low APGAR scores suggests the 
potential for integrated predictive frameworks that 
could simultaneously assess multiple neonatal condi-
tions. Such approaches would provide clinicians with 
more comprehensive and actionable insights, enhanc-
ing prenatal and perinatal care.

Similarly, a recent study [29] proposed a machine 
learning-based model for predicting nonreassuring fetal 
heart patterns, which are often associated with fetal dis-
tress. This work emphasizes the growing potential of 
machine learning in identifying high-risk situations dur-
ing labor and delivery, further supporting the adoption of 
predictive models like ours in clinical practice. By com-
bining insights from this study with our findings on low 
APGAR scores and related conditions, future research 
could develop unified frameworks to improve neonatal 
care and reduce adverse outcomes.

The feature importance plot, shown in Fig. 6 and gener-
ated by the RF classifier, offers valuable insights into the 
variables that most significantly impact the prediction of 
low APGAR scores. Future research could explore how 
combining predictive models for neonatal conditions 
such as low APGAR scores, birth asphyxia, and fetal dis-
tress could further optimize clinical decision-making.

Fig. 5  SHAP summary plot for the random forest model, showing the impact of features on the prediction of low APGAR scores
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Machine learning model performance
Among the evaluated ML models, the RF classifier 
demonstrated superior performance across all metrics, 
including accuracy, precision, recall, and F1-score. Its 
ensemble approach effectively captured complex, non-
linear relationships between maternal, fetal, and perina-
tal risk factors, achieving an area under the curve (AUC) 
of 0.99. RF’s ability to minimize overfitting using boot-
strap aggregation (bagging) and handle mixed data types 
without extensive preprocessing made it particularly 
well-suited for this task. The model’s feature importance 
analysis also enhanced interpretability, ensuring critical 
risk factors were correctly weighted.

Other models, such as Linear SVM, also performed 
well with an AUC of 0.99 but required significant compu-
tational resources and hyperparameter tuning, limiting 
their practicality. In contrast, models like KNN and MLP 
neural networks underperformed, with AUC scores of 
0.54 and susceptibility to overfitting, respectively. These 
results highlight the importance of model selection and 
optimization in clinical prediction tasks, where high sen-
sitivity and specificity are critical.

Furthermore, the application of machine learning for 
nonreassuring fetal heart patterns, a condition linked to 
birth asphyxia [23], could further enhance the accuracy 
of obstetric risk assessments. For example, deep learning 

models have been employed to analyze CTG images and 
predict fetal hypoxia, which shares clinical overlap with 
low APGAR scores and asphyxia. Incorporating these 
advanced techniques into future studies could broaden 
the scope of neonatal risk prediction.

Implications for clinical practice
The findings of this study underscore the potential of 
ML in improving obstetric care. By identifying key risk 
factors for low APGAR scores, ML models can support 
healthcare providers in making early and informed deci-
sions, reducing medical errors, and improving neonatal 
outcomes. For example, targeted interventions can be 
developed to address high-risk factors such as low birth 
weight, maternal BMI, and preterm delivery. Integrating 
ML-based decision support systems into clinical work-
flows could optimize resource allocation and enhance 
prenatal and postnatal care practices. Moreover, expand-
ing the application of machine learning to related condi-
tions, such as nonreassuring fetal heart patterns and birth 
asphyxia, could provide a more comprehensive approach 
to neonatal care. By addressing multiple adverse out-
comes simultaneously, healthcare providers can further 
reduce neonatal morbidity and mortality. Future research 
should focus on developing integrated machine learn-
ing models that can predict a range of neonatal risks, 

Fig. 6  Random forest classification feature importance
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ensuring a holistic approach to improving obstetric and 
neonatal outcomes.

Conclusion and future directions
This study demonstrates the potential of machine learn-
ing (ML) techniques in identifying and understanding the 
risk factors associated with low APGAR scores at birth. 
By leveraging a Random Forest classifier and applying 
hyperparameter optimization, the model achieved excep-
tional predictive performance, with an accuracy of 96%, 
precision of 98%, recall of 97%, and an F1-score of 97%. 
The feature importance analysis highlighted birth weight, 
gestational age, maternal BMI, and mode of delivery as 
the most influential factors affecting neonatal outcomes. 
These findings underscore the value of integrating ML 
algorithms in obstetric care to enhance predictive accu-
racy, guide clinical decision-making, and improve neona-
tal outcomes.

The reliability of the data used in this study was 
ensured through several measures. The dataset was 
derived from the electronic medical records (EMRs) of a 
well-established hospital in Wad Medani, Sudan. These 
records are routinely collected by trained healthcare 
professionals following standardized clinical protocols, 
ensuring consistency and accuracy. In addition, the data-
set underwent rigorous quality control processes prior 
to analysis, including the identification and exclusion of 
incomplete or inconsistent entries. Key clinical variables 
such as APGAR scores, birth weight, and gestational age 
were carefully reviewed to ensure their validity, as these 
are universally recognized and standardized indicators 
in obstetric care. Although the data is specific to a single 
hospital, these steps were taken to maximize its reliability 
and minimize potential biases.

However, we acknowledge that data reliability can be 
further enhanced by validating the model using datasets 
from additional institutions and populations. This limita-
tion has been explicitly discussed in the manuscript, and 
future studies should prioritize the use of more diverse 
and representative datasets to improve the generalizabil-
ity of the findings.

Future research should focus on validating these find-
ings using larger and more diverse datasets to ensure 
both reliability and generalizability. Additionally, explor-
ing advanced ML techniques, such as deep learning and 
ensemble methods, could further improve predictive 
performance. Incorporating additional data sources, 
such as real-time physiological monitoring and genomic 
information, may provide deeper insights into the com-
plex factors influencing neonatal outcomes. Finally, inte-
grating explainable AI techniques will be essential to 
ensure that ML models are interpretable and applicable 
in clinical settings. These efforts, combined with rigorous 

external validation and robust data collection practices, 
have the potential to pave the way for more comprehen-
sive and personalized prenatal care strategies, ultimately 
improving neonatal outcomes and reducing the burden 
of low APGAR scores.
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